skip to main content


Title: Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES‐Era Data
Abstract

Phytoplankton productivity and export sequester climatically significant quantities of atmospheric carbon dioxide as particulate organic carbon through a suite of processes termed the biological pump. Constraining how the biological pump operated in the past is important for understanding past atmospheric carbon dioxide concentrations and Earth's climate history. However, reconstructing the history of the biological pump requires proxies. Due to their intimate association with biological processes, several bioactive trace metals and their isotopes are potential proxies for past phytoplankton productivity, including iron, zinc, copper, cadmium, molybdenum, barium, nickel, chromium, and silver. Here, we review the oceanic distributions, driving processes, and depositional archives for these nine metals and their isotopes based on GEOTRACES‐era datasets. We offer an assessment of the overall maturity of each isotope system to serve as a proxy for diagnosing aspects of past ocean productivity and identify priorities for future research. This assessment reveals that cadmium, barium, nickel, and chromium isotopes offer the most promise as tracers of paleoproductivity, whereas iron, zinc, copper, and molybdenum do not. Too little is known about silver to make a confident determination. Intriguingly, the trace metals that are least sensitive to productivity may be used to track other aspects of ocean chemistry, such as nutrient sources, particle scavenging, organic complexation, and ocean redox state. These complementary sensitivities suggest new opportunities for combining perspectives from multiple proxies that will ultimately enable painting a more complete picture of marine paleoproductivity, biogeochemical cycles, and Earth's climate history.

 
more » « less
Award ID(s):
2023456 1850807 1827401 1736949
NSF-PAR ID:
10360339
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
35
Issue:
11
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Geochemical analyses of trace elements in the ocean water column have suggested that pelagic clay‐rich sediments are a major source of various elements to bottom‐waters. However, corresponding high‐quality measurements of trace element concentrations in porewaters of pelagic clay‐rich sediments are scarce, making it difficult to evaluate the contributions from benthic processes to global oceanic cycles of trace elements. To bridge this gap, we analyzed porewater and bulk sediment concentrations of vanadium, chromium, cobalt, nickel, copper, arsenic, molybdenum, barium and uranium, as well as concentrations of the major oxidants nitrate, manganese, iron, and sulfate in the top 30 cm of cores collected along a transect from Hawaii to Alaska. The data show large increases in porewater concentrations of vanadium, manganese, cobalt, nickel, copper, and arsenic within the top cm of the sediment, consistent with the release of these elements from remineralized organic matter. The sediments are a sink for sulfate, uranium, and molybdenum, even though conditions within the sampled top 30 cm remain aerobic. Porewater chromium concentrations generally increase with depth due to release from sediment particles. Extrapolated to the global aerial extent of pelagic clay sediment, the benthic fluxes in mol yr−1are Ba 3.9 ± 3.6 × 109, Mn 3.4 ± 3.5 × 108, Co 2.6 ± 1.3 × 107, Ni 9.6 ± 8.6 × 108, Cu 4.6 ± 2.4 × 109, Cr 1.7 ± 1.1 × 108, As 6.1 ± 7.0 × 108, V 6.0 ± 2.5 × 109. With the exception of vanadium, calculated fluxes across the sediment–water interface are consistent with the variability in bottom‐water concentrations and ocean residence time of the studied elements.

     
    more » « less
  2. Abstract

    In the Southern Ocean, it is well‐known that iron (Fe) limits phytoplankton growth. Yet, other trace metals can also affect phytoplankton physiology. This study investigated feedbacks between phytoplankton growth and dissolved Fe, manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) concentrations in Southern Ocean shipboard incubations. Three experiments were conducted in September–October 2016 near the West Antarctic Peninsula: Incubations 1 and 3 offshore in the Antarctic Circumpolar Current, and Incubation 2 inshore in Bransfield Strait. Additions of Fe and/or vitamin B12to inshore and offshore waters were employed and allowed assessment of metal (M) uptake relative to soluble reactive phosphorus (P) across a wide range of initial conditions. Offshore, treatments of >1 nmol L−1added Fe were Fe‐replete, whereas inshore waters were already Fe‐replete. Results suggest Mn was a secondary limiting nutrient inshore and offshore. No Fe‐vitamin B12colimitation was observed. Overall, M:P uptake in the incubations was closely related to initial dissolved M:P for Fe, Mn, Co, Ni, and Cd, and for Cu inshore. Final concentrations of Fe and Zn were similar across light treatments of the experiments despite very different phytoplankton responses, and we observed evidence for Co/Cd/Zn substitution and for recycling of biogenic metals as inventories plateaued. In dark bottles, the absence of Mn oxidation may have allowed more efficient recycling of Fe and other trace metals. Our results provide insight into factors governing trace metal uptake, with implications for phytoplankton community composition locally and preformed micronutrient bioavailability in Southern Ocean water masses.

     
    more » « less
  3. Abstract

    Macronutrients and trace metals are incorporated into phytoplankton during growth and regenerated back into the water column when phytoplankton decay, a process that contributes to the distributions of dissolved trace metals and macronutrients in depth profiles. To study this, we incubated mixed Gulf of Mexico phytoplankton assemblages and monocultures of the diatomPseudo‐nitzschia dolorosaand the dinoflagellateKarenia brevisin the dark. Over 6 months, macronutrients (phosphate, silicic acid, nitrate + nitrite, nitrite, ammonium), chlorophyll‐a, particulate organic carbon and nitrogen, and prokaryotes were monitored alongside dissolved manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb). Results were compared to depth profiles to evaluate the role of regeneration in trace metal cycling. In contrast to water‐column distributions, silicic acid and phosphate were closely coupled in experiments containing diatoms, indicating a shared regeneration pathway. Nitrification and nitrifying prokaryotes were only observed near the end of a subset of the experiments. Of the trace metals, Cd was most tightly coupled with phosphate. Regeneration of Mn was followed by rapid drawdown, consistent with Mn‐oxide formation. Iron (Fe), Cu, and Pb typically remained low until Mn was depleted, suggesting either scavenging to Mn‐oxides or otherwise delayed regeneration of these elements. Cobalt (Co) and Ni were largely conservative, but behaved like nutrients in the experiment using more offshore water low in Cd and Zn. Although experimental conditions were limited in their representation of the water column, these incubations provide novel insight into macronutrient and trace metal regeneration in the oceans.

     
    more » « less
  4. Abstract

    The reliability of paleoproductivity proxies must be determined before assessing the role of the oceanic carbon (C) cycle in affecting past climate changes. We compare paleoproductivity records of newly generated micropaleontological data (benthic foraminiferal accumulation rates, BFAR) to those of existing geochemical data (reactive phosphorus [reactive P] mass accumulation rates [MAR] and biological barium [bio‐Ba] MAR) for the same Paleogene‐aged sediments. Sediments are from the Atlantic (Maud Rise, Ocean Drilling Program Sites 689/690) and the Indian (Kerguelen plateau, Ocean Drilling Program Site 738) sectors of the Southern Ocean. Reactive P MAR, but not bio‐Ba MAR, correlates to varying degree with BFAR for all three sites investigated. Export productivity, delivery of organic C to the seafloor, and organic C burial calculated here using bio‐Ba MAR, BFAR, and reactive P MAR, respectively, for these sites during the Early Paleogene span 2 orders of magnitude (~0.01 to 1 g C·cm−2·kyr−1). Differences in magnitude of reconstructed organic C fluxes are expected because different proxies record different aspects of the biological pump, and these aspects did not behave proportionally similar for all periods. Proxies studied here indicate that transfer efficiency, the fraction of exported organic matter from 100 m that reaches the deep ocean, was low for the Early Paleogene Southern Ocean, similar to today. Despite this, absolute organic carbon burial was similar or higher than today because export productivity was similar or higher. Elevated temperatures may have increased both biological production and respiration in the Early Paleogene Southern Ocean.

     
    more » « less
  5. null (Ed.)
    Cadmium is a trace metal of interest in the ocean partly because its concentration mimics that of phosphate. However, deviations from the global mean dissolved Cd/PO 4 relationship are present in oxygen deficient zones, where Cd is depleted relative to phosphate. This decoupling has been suggested to result from cadmium sulphide (CdS) precipitation in reducing microenvironments within sinking organic matter. We present Cd concentrations and Cd isotope compositions in organic-rich sediments deposited at several upwelling sites along the northeast Pacific continental margin. These sediments all have enriched Cd concentrations relative to crustal material. We calculate a net accumulation rate of Cd in margin settings of between 2.6 to 12.0 × 10 7  mol/yr, higher than previous estimates, but at the low end of a recently published estimate for the magnitude of the marine sink due to water column CdS precipitation. Cadmium in organic-rich sediments is isotopically light ( δ 114/110 Cd NIST-3108 = +0.02 ± 0.14‰, n = 26; 2 SD) compared to deep seawater (+0.3 ± 0.1‰). However, isotope fractionation during diagenesis in continental margin settings appears to be small. Therefore, the light Cd isotope composition of organic-rich sediments is likely to reflect an isotopically light source of Cd. Non-quantitative biological uptake of light Cd by phytoplankton is one possible means of supplying light Cd to the sediment, which would imply that Cd isotopes could be used as a tracer of past ocean productivity. However, water column CdS precipitation is also predicted to preferentially sequester light Cd isotopes from the water column, which could obfuscate Cd as a tracer. We also observe notably light Cd isotope compositions associated with elevated solid phase Fe concentrations, suggesting that scavenging of Cd by Fe oxide phases may contribute to the light Cd isotope composition of sediments. These multiple possible sources of isotopically light Cd to sediments, along with evidence for complex particle cycling of Cd in the water column, bring into question the straightforward application of Cd isotopes as a paleoproductivity proxy. 
    more » « less