Bacterial cellulose (BC) has excellent material properties and can be produced sustainably through simple bacterial culture, but BC‐producing bacteria lack the extensive genetic toolkits of model organisms such as
Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions. The emerging field of living materials has leveraged microbial engineering to produce materials for various applications but building 3D structures in arbitrary patterns and shapes has been a major challenge. Here we set out to develop a bioink, termed as “microbial ink” that is produced entirely from genetically engineered microbial cells, programmed to perform a bottom-up, hierarchical self-assembly of protein monomers into nanofibers, and further into nanofiber networks that comprise extrudable hydrogels. We further demonstrate the 3D printing of functional living materials by embedding programmed
- NSF-PAR ID:
- 10360398
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Escherichia coli (E. coli ). Here, a simple approach is reported for producing highly programmable BC materials through incorporation of engineeredE. coli . The acetic acid bacteriumGluconacetobacter hansenii is cocultured with engineeredE. coli in droplets of glucose‐rich media to produce robust cellulose capsules, which are then colonized by theE. coli upon transfer to selective lysogeny broth media. It is shown that the encapsulatedE. coli can produce engineered protein nanofibers within the cellulose matrix, yielding hybrid capsules capable of sequestering specific biomolecules from the environment and enzymatic catalysis. Furthermore, capsules are produced which can alter their own bulk physical properties through enzyme‐induced biomineralization. This novel system uses a simple fabrication process, based on the autonomous activity of two bacteria, to significantly expand the functionality of BC‐based living materials. -
Abstract Protein‐based biomaterials have played a key role in tissue engineering, and additional exciting applications as self‐healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram‐positive bacterium
Bacillus subtilis can be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion‐catalyzed assembly (SCA). Secreted silk fibers form self‐healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials fromBacillus cells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories. -
Abstract Living 3D in vitro tissue cultures, grown from immortalized cell lines, act as living sentinels as pathogenic bacteria invade the tissue. The infection is reported through changes in the intracellular dynamics of the sentinel cells caused by the disruption of normal cellular function by the infecting bacteria. Here, the Doppler imaging of infected sentinels shows the dynamic characteristics of infections. Invasive
Salmonella enterica serovar Enteritidis andListeria monocytogenes penetrate through multicellular tumor spheroids, while non-invasive strains ofEscherichia coli andListeria innocua remain isolated outside the cells, generating different Doppler signatures. Phase distributions caused by intracellular transport display Lévy statistics, introducing a Lévy-alpha spectroscopy of bacterial invasion. Antibiotic treatment of infected spheroids, monitored through time-dependent Doppler shifts, can distinguish drug-resistant relative to non-resistant strains. This use of intracellular Doppler spectroscopy of living tissue sentinels opens a new class of microbial assay with potential importance for studying the emergence of antibiotic resistance. -
Abstract Probiotics, whether taken as capsules or consumed in foods, have been regarded as safe for human use by regulatory agencies. Being living cells, they serve as “tunable” factories for the synthesis of a vast array of beneficial molecules. The idea of reprogramming probiotics to act as controllable factories, producing potential therapeutic molecules under user‐specified conditions, represents a new and powerful concept in drug synthesis and delivery. Probiotics that serve as drug delivery vehicles pose several challenges, one being targeting (as seen with nanoparticle approaches). Here, we employ synthetic biology to control swimming directionality in a process referred to as “pseudotaxis.”
Escherichia coli , absent the motility regulatorcheZ , swim sporadically, missing the traditional “run” in the run:tumble swimming paradigm. Upon introduction ofcheZ in trans and its signal‐generated upregulation, engineered bacteria can be “programmed” to swim toward the source of the chemical cue. Here, engineered cells that encounter sufficient levels of the small signal molecule pyocyanin, produce an engineered CheZ and swim with programmed directionality. By incorporating a degradation tag at the C‐terminus of CheZ, the cells stop running when they exit spaces containing pyocyanin. That is, the engineered CheZ modified with a C‐terminal extension derived from the putative DNA‐binding transcriptional regulator YbaQ (RREERAAKKVA) is consumed by the ClpXP protease machine at a rate sufficient to “brake” the cells when pyocyanin levels are too low. Through this process, we demonstrate that over time, these engineeredE. coli accumulate in pyocyanin‐rich locales. We suggest that such approaches may find utility in engineering probiotics so that their beneficial functions can be focused in areas of principal benefit. -
Abstract In nature, cells self‐assemble at the microscale into complex functional configurations. This mechanism is increasingly exploited to assemble biofidelic biological systems in vitro. However, precise coding of 3D multicellular living materials is challenging due to their architectural complexity and spatiotemporal heterogeneity. Therefore, there is an unmet need for an effective assembly method with deterministic control on the biomanufacturing of functional living systems, which can be used to model physiological and pathological behavior. Here, a universal system is presented for 3D assembly and coding of cells into complex living architectures. In this system, a gadolinium‐based nonionic paramagnetic agent is used in conjunction with magnetic fields to levitate and assemble cells. Thus, living materials are fabricated with controlled geometry and organization and imaged in situ in real time, preserving viability and functional properties. The developed method provides an innovative direction to monitor and guide the reconfigurability of living materials temporally and spatially in 3D, which can enable the study of transient biological mechanisms. This platform offers broad applications in numerous fields, such as 3D bioprinting and bottom‐up tissue engineering, as well as drug discovery, developmental biology, neuroscience, and cancer research.