skip to main content


Title: Earthcasting: Geomorphic Forecasts for Society
Abstract

Over the last several decades, the study of Earth surface processes has progressed from a descriptive science to an increasingly quantitative one due to advances in theoretical, experimental, and computational geosciences. The importance of geomorphic forecasts has never been greater, as technological development and global climate change threaten to reshape the landscapes that support human societies and natural ecosystems. Here we explore best practices for developing socially relevant forecasts of Earth surface change, a goal we are calling “earthcasting”. We suggest that earthcasts have the following features: they focus on temporal (∼1–∼100 years) and spatial (∼1 m–∼10 km) scales relevant to planning; they are designed with direct involvement of stakeholders and public beneficiaries through the evaluation of the socioeconomic impacts of geomorphic processes; and they generate forecasts that are clearly stated, testable, and include quantitative uncertainties. Earthcasts bridge the gap between Earth surface researchers and decision‐makers, stakeholders, researchers from other disciplines, and the general public. We investigate the defining features of earthcasts and evaluate some specific examples. This paper builds on previous studies of prediction in geomorphology by recommending a roadmap for (a) generating earthcasts, especially those based on modeling; (b) transforming a subset of geomorphic research into earthcasts; and (c) communicating earthcasts beyond the geomorphology research community. Earthcasting exemplifies the social benefit of geomorphology research, and it calls for renewed research efforts toward further understanding the limits of predictability of Earth surface systems and processes, and the uncertainties associated with modeling geomorphic processes and their impacts.

 
more » « less
Award ID(s):
1940273
NSF-PAR ID:
10448198
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
9
Issue:
11
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    High‐resolution digital elevation models (DEMs) have revolutionized research in geomorphology by allowing for detailed quantitative analysis of Earth's surface. Satellite stereo images offer the promise of expanding the availability of high‐resolution DEMs over broad areas, but rigorous evaluation of the scientific application of these datasets remains limited. In this study, we consider DEMs built using stereo pairs of high‐resolution (0.5 m) satellite imagery and the open‐source DEM extraction algorithm, Surface Extraction from TIN Space‐search Minimization (SETSM). We selected locations across a range of landscapes to evaluate the application of these DEMs to geomorphic problems, with particular attention to hillslope analyses where high spatial resolution has been shown to be important for revealing topographic signatures of tectonic and environmental processes. We compared the quality of SETSM 2 m DEMs to LiDAR‐derived DEMs and the widely available SRTM‐30 m and ALOS‐30 m DEMs by comparing the elevation data and derivative products (e.g., slope, aspect, and curvature). We found that SETSM DEMs performed noticeably better than SRTM and ALOS DEMs, but with systematic biases relative to LiDAR DEMs in regions with vegetation. Moreover, noise in the initial SETSM elevation data is amplified with every subsequent derivative, significantly decreasing quality. Finally, we evaluated the potential use of SETSM products for change detection. Applying DEM differencing to a major landslide, we found volume and sediment thickness from SETSM DEMs were similar to volumes and thicknesses from other studies. This example illustrates the capabilities of SETSM and other satellite‐based stereo‐photogrammetry for contributing to rapid response after natural disasters. Overall, we conclude that DEMs derived from satellite image stereo‐photogrammetry can markedly improve on lower resolution global elevation data for terrain analysis and can open possibilities for change detection, but that care needs to be taken in their application especially in regions with significant vegetation.

     
    more » « less
  2. Abstract

    Climate change has lengthened wildfire seasons and transformed fire regimes throughout the world. Thus, capturing fuel and fire dynamics is critical for projecting Earth system processes in warmer and drier future. Recent advances in fire regime modeling have linked land surface models with fire behavior models. Such models often rely on fine surface fuels to drive fire behavior and effects, and while many models can simulate processes that control how these fuels change through time (i.e., fine fuel accumulation), fuel loading estimates remain highly uncertain, largely due to uncertainties in the algorithms controlling decomposition. Uncertainties are often amplified in climate change forecasts when initial conditions and feedbacks are not well represented. The goal of this review is to highlight fine fuel decomposition as a key uncertainty in model systems. We review the current understanding of mechanisms controlling decomposition, describe how they are incorporated into models, and evaluate the uncertainties associated with different approaches. We also use three state‐of‐the‐art land surface fire regime models to demonstrate the sensitivity of decomposition and subsequent wildfire projections to both parameter and model structure uncertainty and show that sensitivity can increase substantially under future climate warming. Given that many of the governing decomposition equations are based on individual case studies from a single location, and because key parameters are often hard coded, critical uncertainties are currently ignored. It is essential to be transparent about these uncertainties as the domain of land surface models is expanded to include the evaluation of future wildfire regimes.

     
    more » « less
  3. Abstract. The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.
    Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these activities can only be accomplished with observatories. Here we review the CZO enterprise in the United States and identify how such observatories could operate in the future as a network designed to generate critical scientific insights. Specifically, we recognize the need for the network to study network-level questions, expand the environments under investigation, accommodate both hypothesis testing and monitoring, and involve more stakeholders. We propose a driving question for future CZ science and a hubs-and-campaigns model to address that question and target the CZ as one unit. Only with such integrative efforts will we learn to steward the life-sustaining critical zone now and into the future.

     
    more » « less
  4. Abstract

    High tide floods (HTFs) are minor, shallow flooding events whose frequency has increased due to relative sea‐level rise (SLR) and secular changes in tides. Here we isolate and examine the role of historical landscape change (geomorphology, land cover) and SLR on tides and HTF frequency in an urbanized lagoonal estuary: Jamaica Bay, New York. The approach involves data archeology, historical (1870s) map digitization, as well as numerical modeling of the bay. Numerical simulations indicate that a century of landscape alterations (e.g., inlet deepening and widening, channel deepening, and wetland reclamation) increased the mean tidal range at the head of the bay by about 20%. The observed historical shift from the attenuation to amplification of semidiurnal tides is primarily associated with reduced tidal damping at the inlet and increased tidal reflection. The 18% decrease in surface area exerts a minor influence. A 1‐year (2020) water level simulation is used to evaluate the effects of both SLR and altered morphology on the annual number of HTFs. Results show that of 15 “minor flood” events in 2020, only one would have occurred without SLR and two without landscape changes since the 1870s. Spectral and transfer function analyses of water level reveal frequency‐dependent fingerprints of landscape change, with a significant decrease in damping for high‐frequency surges and tides (6–18 hr time scale). By contrast, SLR produced only minor effects on frequency‐dependent amplification. Nonetheless, the geomorphic influence on the dynamical response significantly increases the vulnerability of the system to SLR, particularly high‐tide flooding.

     
    more » « less
  5. Abstract

    The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.

     
    more » « less