skip to main content

Title: Micron-scale supramolecular myosin arrays help mediate cytoskeletal assembly at mature adherens junctions

Epithelial cells assemble specialized actomyosin structures at E-Cadherin–based cell–cell junctions, and the force exerted drives cell shape change during morphogenesis. The mechanisms that build this supramolecular actomyosin structure remain unclear. We used ZO-knockdown MDCK cells, which assemble a robust, polarized, and highly organized actomyosin cytoskeleton at the zonula adherens, combining genetic and pharmacologic approaches with superresolution microscopy to define molecular machines required. To our surprise, inhibiting individual actin assembly pathways (Arp2/3, formins, or Ena/VASP) did not prevent or delay assembly of this polarized actomyosin structure. Instead, as junctions matured, micron-scale supramolecular myosin arrays assembled, with aligned stacks of myosin filaments adjacent to the apical membrane, overlying disorganized actin filaments. This suggested that myosin arrays might bundle actin at mature junctions. Consistent with this idea, inhibiting ROCK or myosin ATPase disrupted myosin localization/organization and prevented actin bundling and polarization. We obtained similar results in Caco-2 cells. These results suggest a novel role for myosin self-assembly, helping drive actin organization to facilitate cell shape change.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.1083
Date Published:
Journal Name:
Journal of Cell Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In most eukaryotic cells, actin filaments assemble into a shell-like actin cortex under the plasma membrane, controlling cellular morphology, mechanics, and signaling. The actin cortex is highly polymorphic, adopting diverse forms such as the ring-like structures found in podosomes, axonal rings, and immune synapses. The biophysical principles that underlie the formation of actin rings and cortices remain unknown. Using a molecular simulation platform called MEDYAN, we discovered that varying the filament treadmilling rate and myosin concentration induces a finite size phase transition in actomyosin network structures. We found that actomyosin networks condense into clusters at low treadmilling rates or high myosin concentrations but form ring-like or cortex-like structures at high treadmilling rates and low myosin concentrations. This mechanism is supported by our corroborating experiments on live T cells, which exhibit ring-like actin networks upon activation by stimulatory antibody. Upon disruption of filament treadmilling or enhancement of myosin activity, the pre-existing actin rings are disrupted into actin clusters or collapse towards the network center respectively. Our analyses suggest that the ring-like actin structure is a preferred state of low mechanical energy, which is, importantly, only reachable at sufficiently high treadmilling rates. 
    more » « less
  2. The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.

    more » « less
  3. In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.

    more » « less
  4. Abstract

    Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use theC. elegansspermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN‐1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss offln‐1results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.

    more » « less
  5. Shear forces between cells occur during global changes in multicellular organization during morphogenesis and tissue growth, yet how cells sense shear forces and propagate a response across a tissue is unknown. We found that applying exogenous shear at the midline of an epithelium induced a local, short-term deformation near the shear plane, and a long-term collective oscillatory movement across the epithelium that spread from the shear-plane and gradually dampened. Inhibiting actomyosin contraction or E-cadherin trans-cell adhesion blocked oscillations, whereas stabilizing actin filaments prolonged oscillations. Combining these data with a model of epithelium mechanics supports a mechanism involving the generation of a shear-induced mechanical event at the shear plane which is then relayed across the epithelium by actomyosin contraction linked through E-cadherin. This causes an imbalance of forces in the epithelium, which is gradually dissipated through oscillatory cell movements and actin filament turnover to restore the force balance across the epithelium. 
    more » « less