skip to main content


Title: LCAart: Communicating industrial ecology at a human scale
Abstract

This Forum piece describes a collaborative project between engineering and architecture to visualize some of the most influential results from industrial ecology using human‐scale, photorealistic images that are quantitatively accurate. Our goal was to apply visualization theories and practices from art and architecture to address a major communication problem in our field: though inspirational in concept, in practice much industrial ecology research is difficult to comprehend for the average person. Models are large and complex, metrics are esoteric, and results are often reported on a scale that is devoid of personal meaning. Our strategy was to place hidden flows and embodied emissions in plain sight, creating images that show the environmental implications of consumption as absurd insertions into scenes of daily life, at a scale that is relatable and personally meaningful. We also compare with and discuss other artistic efforts around the world in the oeuvre of “Consumption Art,” providing historical context. Industrial ecology envisions a world where production systems can incorporate social and environmental implications in real‐time, where policy is informed by our best understanding of trade‐offs and inequities, and where the public has an appreciation for what actions are meaningful, all with the goals of improving quality of life for all while safeguarding the environment and human health. Effective communication of our research is vital to build consensus for policy and action toward this vision, and one under‐appreciated aspect of communication in our field is the sympathetic power of Art.

 
more » « less
NSF-PAR ID:
10360469
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Industrial Ecology
Volume:
24
Issue:
4
ISSN:
1088-1980
Page Range / eLocation ID:
p. 736-747
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Essential for society to function, the production and consumption of food, energy, and water (FEW) are deeply intertwined, leading to calls for a nexus approach to understand and manage the complex tradeoffs and cascading effects. What research exists to date on this FEW nexus? How have scholars conceptualized these interactions at the urban scale? What are some promising approaches? Where are the research gaps? To answer these questions, we conducted a quantitative review of the academic literature on the FEW nexus (1399 publications) over more than four decades (1973–2017), followed by in-depth analysis of the most influential papers using an evaluation matrix that examined four components: 1) modeling approach; 2) scale; 3) nexus ‘trigger’; and 4) governance and policy. Scholars in the fields of environmental science predominated, while social science domains were under-represented. Most papers used quantitative rather than qualitative approaches, especially integrated assessment and systems dynamics modeling although spatial scale was generally recognized, explicit consideration of multi-scalar interactions was limited. Issues of institutional structure, governance, equity, resource access, and behavior were also underdeveloped. Bibliometric analysis of this literature revealed six distinct research communities, including a nascent urban FEW community. We replicated the analysis for this urban group, finding it to be just emerging (80% of papers have been published since 2010) and dominated by scholars in industrial ecology. These scholars focus on quantifying FEW flows of the urban metabolism in isolation rather than as a nexus, largely ignoring the political and socio-economic factors shaping these flows. We propose the urban FEW metabolism as a boundary object to draw in diverse scholarly and practitioner communities. This will advance research on complex FEW systems in four key areas: (1) integration of heterogeneous models and approaches; (2) scalar linkages between urban consumption and trans-boundary resource flows; (3) how actors and institutions shape resource access, distribution and use; and (4) co-production of knowledge with stakeholders.

     
    more » « less
  2. Abstract

    Information about the spatial distribution of species lies at the heart of many important questions in ecology. Logistical limitations and collection biases, however, limit the availability of such data at ecologically relevant scales. Remotely sensed information can alleviate some of these concerns, but presents challenges associated with accurate species identification and limited availability of field data for validation, especially in high diversity ecosystems such as tropical forests.

    Recent advances in machine learning offer a promising and cost‐efficient approach for gathering a large amount of species distribution data from aerial photographs. Here, we propose a novel machine learning framework, artificial perceptual learning (APL), to tackle the problem of weakly supervised pixel‐level mapping of tree species in forests. Challenges arise from limited availability of ground labels for tree species, lack of precise segmentation of tree canopies and misalignment between visible canopies in the aerial images and stem locations associated with ground labels. The proposed APL framework addresses these challenges by constructing a workflow using state‐of‐the‐art machine learning algorithms.

    We develop and illustrate the proposed framework by implementing a fine‐grain mapping of three species, the palmPrestoea acuminataand the tree speciesCecropia schreberianaandManilkara bidentata, over a 5,000‐ha area of El Yunque National Forest in Puerto Rico. These large‐scale maps are based on unlabelled high‐resolution aerial images of unsegmented tree canopies. Misaligned ground‐based labels, available for <1% of these images, serve as the only weak supervision. APL performance is evaluated using ground‐based labels and high‐quality human segmentation using Amazon Mechanical Turk, and compared to a basic workflow that relies solely on labelled images.

    Receiver operating characteristic (ROC) curves and Intersection over Union (IoU) metrics demonstrate that APL substantially outperforms the basic workflow and attains human‐level cognitive economy, with 50‐fold time savings. For the palm andC. schreberiana, the APL framework has high pixelwise accuracy and IoU with reference to human segmentations. ForM.bidentata, APL predictions are congruent with ground‐based labels. Our approach shows great potential for leveraging existing data from global forest plot networks coupled with aerial imagery to map tree species at ecologically meaningful spatial scales.

     
    more » « less
  3. Abstract

    With the development of industrial automation and artificial intelligence, robotic systems are developing into an essential part of factory production, and the human-robot collaboration (HRC) becomes a new trend in the industrial field. In our previous work, ten dynamic gestures have been designed for communication between a human worker and a robot in manufacturing scenarios, and a dynamic gesture recognition model based on Convolutional Neural Networks (CNN) has been developed. Based on the model, this study aims to design and develop a new real-time HRC system based on multi-threading method and the CNN. This system enables the real-time interaction between a human worker and a robotic arm based on dynamic gestures. Firstly, a multi-threading architecture is constructed for high-speed operation and fast response while schedule more than one task at the same time. Next, A real-time dynamic gesture recognition algorithm is developed, where a human worker’s behavior and motion are continuously monitored and captured, and motion history images (MHIs) are generated in real-time. The generation of the MHIs and their identification using the classification model are synchronously accomplished. If a designated dynamic gesture is detected, it is immediately transmitted to the robotic arm to conduct a real-time response. A Graphic User Interface (GUI) for the integration of the proposed HRC system is developed for the visualization of the real-time motion history and classification results of the gesture identification. A series of actual collaboration experiments are carried out between a human worker and a six-degree-of-freedom (6 DOF) Comau industrial robot, and the experimental results show the feasibility and robustness of the proposed system.

     
    more » « less
  4. Purpose The authors use a co-auto-ethnographic study of Hurricane Harvey where both authors were citizen responders and disaster researchers. In practice, large-scale disaster helps temporarily foster an ideal of community which is then appropriated by emergency management institutions. The advancement of disaster research must look to more radical perspectives on human response in disaster and what this means for the formation of communities and society itself. It is the collective task as those invested in the management of crises defer to the potentials of publics, rather than disdain and appropriate them. The authors present this work in the advancement of more empirically informed mitigation of societal ills that produce major causes of disaster. The authors’ work presents a departure from the more traditional disaster work into a critical and theoretical realm using novel research methods. The paper aims to discuss these issues. Design/methodology/approach This paper produces a co-auto-ethnographic study of Hurricane Harvey where both authors were citizen responders and disaster researchers. Findings The authors provide a critical, theoretical argument that citizen-based response fosters an ephemeral utopia not usually experienced in everyday life. Disasters present the possibility of an ideal of community. These phenomena, in part, allow us to live our better selves in the case of citizen response and provide a direct contrast to the modern experience. Modernity is a mostly fabricated, if not almost eradicated sense of community. Modern institutions, serve as sources of domination built on the backs of technology, continuity of infrastructures and self-sufficiency when disasters handicap society, unpredictability breaks illusions of modernity. There arises a need to re-engage with those around us in meaningful and exciting ways. Research limitations/implications This work produces theory rather than engage in testing theory. It is subject to all the limitations of interpretive work that focuses on meaning and critique rather than advancing associations or causality. Practical implications The authors suggest large-scale disasters will persist to overwhelm management institutions no matter how much preparedness and planning occurs. The authors also offer an alternative suggestion to the institutional status quo system based on the research; let the citizenry do what they already do, whereas institutions focus more on mitigate of social ills that lead to disaster. This is particularly urgent given increasing risk of events exacerbated by anthropogenic causes. Social implications The advancement of disaster research must look to more radical perspectives on human response in disaster and what this means for the formation of communities and society itself. It is the collective task as those invested in the management of crises to defer to the potentials of publics, rather than disdain and appropriate them. The authors also suggest that meaningful mitigation of social ills that recognize and emphasize difference will be the only way to manage future large-scale events. Originality/value The authors’ work presents a departure from the more practical utility of disaster work into a critical and highly theoretical realm using novel research methods. 
    more » « less
  5. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less