skip to main content


Title: Independent control of mean and noise by convolution of gene expression distributions
Abstract

Gene expression noise can reduce cellular fitness or facilitate processes such as alternative metabolism, antibiotic resistance, and differentiation. Unfortunately, efforts to study the impacts of noise have been hampered by a scaling relationship between noise and expression level from individual promoters. Here, we use theory to demonstrate that mean and noise can be controlled independently by expressing two copies of a gene from separate inducible promoters in the same cell. We engineer low and high noise inducible promoters to validate this result inEscherichia coli, and develop a model that predicts the experimental distributions. Finally, we use our method to reveal that the response of a promoter to a repressor is less sensitive with higher repressor noise and explain this result using a law from probability theory. Our approach can be applied to investigate the effects of noise on diverse biological pathways or program cellular heterogeneity for synthetic biology applications.

 
more » « less
NSF-PAR ID:
10360500
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A crucial step towards engineering biological systems is the ability to precisely tune the genetic response to environmental stimuli. In the case ofEscherichia coliinducible promoters, our incomplete understanding of the relationship between sequence composition and gene expression hinders our ability to predictably control transcriptional responses. Here, we profile the expression dynamics of 8269 rationally designed, IPTG-inducible promoters that collectively explore the individual and combinatorial effects of RNA polymerase and LacI repressor binding site strengths. We then fit a statistical mechanics model to measured expression that accurately models gene expression and reveals properties of theoretically optimal inducible promoters. Furthermore, we characterize three alternative promoter architectures and show that repositioning binding sites within promoters influences the types of combinatorial effects observed between promoter elements. In total, this approach enables us to deconstruct relationships between inducible promoter elements and discover practical insights for engineering inducible promoters with desirable characteristics.

     
    more » « less
  2. Abstract Background

    Environmental fluctuation during embryonic and fetal development can permanently alter an organism’s morphology, physiology, and behaviour. This phenomenon, known as developmental plasticity, is particularly relevant to reptiles that develop in subterranean nests with variable oxygen tensions. Previous work has shown hypoxia permanently alters the cardiovascular system of snapping turtles and may improve cardiac anoxia tolerance later in life. The mechanisms driving this process are unknown but may involve epigenetic regulation of gene expression via DNA methylation. To test this hypothesis, we assessed in situ cardiac performance during 2 h of acute anoxia in juvenile turtles previously exposed to normoxia (21% oxygen) or hypoxia (10% oxygen) during embryogenesis. Next, we analysed DNA methylation and gene expression patterns in turtles from the same cohorts using whole genome bisulfite sequencing, which represents the first high-resolution investigation of DNA methylation patterns in any reptilian species.

    Results

    Genome-wide correlations between CpG and CpG island methylation and gene expression patterns in the snapping turtle were consistent with patterns observed in mammals. As hypothesized, developmental hypoxia increased juvenile turtle cardiac anoxia tolerance and programmed DNA methylation and gene expression patterns. Programmed differences in expression of genes such asSCN5Amay account for differences in heart rate, while genes such asTNNT2andTPM3may underlie differences in calcium sensitivity and contractility of cardiomyocytes and cardiac inotropy. Finally, we identified putative transcription factor-binding sites in promoters and in differentially methylated CpG islands that suggest a model linking programming of DNA methylation during embryogenesis to differential gene expression and cardiovascular physiology later in life. Binding sites for hypoxia inducible factors (HIF1A, ARNT, and EPAS1) and key transcription factors activated by MAPK and BMP signaling (RREB1 and SMAD4) are implicated.

    Conclusions

    Our data strongly suggests that DNA methylation plays a conserved role in the regulation of gene expression in reptiles. We also show that embryonic hypoxia programs DNA methylation and gene expression patterns and that these changes are associated with enhanced cardiac anoxia tolerance later in life. Programming of cardiac anoxia tolerance has major ecological implications for snapping turtles, because these animals regularly exploit anoxic environments throughout their lifespan.

     
    more » « less
  3. Abstract

    Engineering signalling between plants and microbes could be exploited to establish host‐specificity between plant‐growth‐promoting bacteria and target crops in the environment. We previously engineered rhizopine‐signalling circuitry facilitating exclusive signalling between rhizopine‐producing (RhiP) plants and model bacterial strains. Here, we conduct an in‐depth analysis of rhizopine‐inducible expression in bacteria. We characterize two rhizopine‐inducible promoters and explore the bacterial host‐range of rhizopine biosensor plasmids. By tuning the expression of rhizopine uptake genes, we also construct a new biosensor plasmid pSIR05 that has minimal impact on host cell growth in vitro and exhibits markedly improved stability of expression in situ onRhiPbarley roots compared to the previously described biosensor plasmid pSIR02. We demonstrate that a sub‐population ofAzorhizobium caulinodanscells carrying pSIR05 can sense rhizopine and activate gene expression when colonizingRhiPbarley roots. However, these bacteria were mildly defective for colonization ofRhiPbarley roots compared to the wild‐type parent strain. This work provides advancement towards establishing more robust plant‐dependent control of bacterial gene expression and highlights the key challenges remaining to achieve this goal.

     
    more » « less
  4. Abstract

    A promising new field of genetically encoded ultrasound contrast agents in the form of gas vesicles has recently emerged, which could extend the specificity of medical ultrasound imaging. However, given the delicate genetic nature of how these genes are integrated and expressed, current methods of producing gas vesicle‐expressing mammalian cell lines requires significant cell processing time to establish a clonal/polyclonal line that robustly expresses the gas vesicles sufficiently enough for ultrasound contrast. Here, we describe an inducible and drug‐selectable acoustic reporter gene system that can enable gas vesicle expression in mammalian cell lines, which we demonstrate using HEK293T cells. Our drug‐selectable construct design increases the stability and proportion of cells that successfully integrate all plasmids into their genome, thus reducing the amount of cell processing time required. Additionally, we demonstrate that our drug‐selectable strategy forgoes the need for single‐cell cloning and fluorescence‐activated cell sorting, and that a drug‐selected mixed population is sufficient to generate robust ultrasound contrast. Successful gas vesicle expression was optically and ultrasonically verified, with cells expressing gas vesicles exhibiting an 80% greater signal‐to‐noise ratio compared to negative controls and a 500% greater signal‐to‐noise ratio compared to wild‐type HEK293T cells. This technology presents a new reporter gene paradigm by which ultrasound can be harnessed to visualize specific cell types for applications including cellular reporting and cell therapies.

     
    more » « less
  5. Abstract

    Eggerthella lentais a prevalent human gut Actinobacterium implicated in drug, dietary phytochemical, and bile acid metabolism and associated with multiple human diseases. No genetic tools are currently available for the direct manipulation ofE. lenta. Here, we construct shuttle vectors and develop methods to transformE. lentaand other Coriobacteriia. With these tools, we characterize endogenousE. lentaconstitutive and inducible promoters using a reporter system and construct inducible expression systems, enabling tunable gene regulation. We also achieve genome editing by harnessing an endogenous type I-C CRISPR-Cas system. Using these tools to perform genetic knockout and complementation, we dissect the functions of regulatory proteins and enzymes involved in catechol metabolism, revealing a previously unappreciated family of membrane-spanning LuxR-type transcriptional regulators. Finally, we employ our genetic toolbox to study the effects ofE. lentagenes on mammalian host biology. By greatly expanding our ability to study and engineer gut Coriobacteriia, these tools will reveal mechanistic details of host-microbe interactions and provide a roadmap for genetic manipulation of other understudied human gut bacteria.

     
    more » « less