A supersonic relative velocity between dark matter (DM) and baryons (the stream velocity) at the time of recombination induces the formation of low-mass objects with anomalous properties in the early universe. We widen the scope of the “Supersonic Project” paper series to include objects we term Dark Matter + Gas Halos Offset by Streaming (DM GHOSts)—diffuse, DM-enriched structures formed because of a physical offset between the centers of mass of DM and baryonic overdensities. We present an updated numerical investigation of DM GHOSts and Supersonically Induced Gas Objects (SIGOs), including the effects of molecular cooling, in high-resolution hydrodynamic simulations using the
The formation of globular clusters and their relation to the distribution of dark matter have long puzzled astronomers. One of the most recently proposed globular cluster formation channels ties ancient star clusters to the large-scale streaming velocity of baryons relative to dark matter in the early universe. These streaming velocities affect the global infall of baryons into dark matter halos, the high-redshift halo mass function, and the earliest generations of stars. In some cases, streaming velocities may result in dense regions of dark matter-free gas that becomes Jeans unstable, potentially leading to the formation of compact star clusters. We investigate this hypothesis using cosmological hydrodynamical simulations that include a full chemical network and the formation and destruction of H2, a process crucial for the formation of the first stars. We find that high-density gas in regions with significant streaming velocities is indeed somewhat offset from the centers of dark matter halos, but this offset is typically significantly smaller than the virial radius. Gas outside of dark matter halos never reaches Jeans-unstable densities in our simulations. We postulate that low-level (
- Publication Date:
- NSF-PAR ID:
- 10360511
- Journal Name:
- The Astrophysical Journal
- Volume:
- 922
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 193
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract AREPO code. Supplemented by an analytical understanding of their ellipsoidal gravitational potentials, we study the population-level properties of these objects, characterizing their morphology, spin, radial mass, and velocity distributions in comparison to classical structures in non-streaming regions. The stream velocity causes deviations from sphericity in both the gas and DM components and lends greater rotational support to the gas. Low-mass (≲105.5M ⊙) objects in regions of streaming demonstrate core-like rotation and mass profiles. Anomalies in the rotation and morphology of DM GHOSts could represent an early universe analog to observed ultra-faint dwarf galaxies with variations in DM content and unusual rotationmore » -
Abstract Supersonically induced gas objects (SIGOs), are structures with little to no dark-matter component predicted to exist in regions of the universe with large relative velocities between baryons and dark matter at the time of recombination. They have been suggested to be the progenitors of present-day globular clusters. Using simulations, SIGOs have been studied on small scales (around 2 Mpc) where these relative velocities are coherent. However, it is challenging to study SIGOs using simulations on large scales due to the varying relative velocities at scales larger than a few Mpc. Here, we study SIGO abundances semi-analytically: using perturbation theory, we predict the number density of SIGOs analytically, and compare these results to small-box numerical simulations. We use the agreement between the numerical and analytic calculations to extrapolate the large-scale variation of SIGO abundances over different stream velocities. As a result, we predict similar large-scale variations of objects with high gas densities before reionization that could possibly be observed by JWST. If indeed SIGOs are progenitors of globular clusters, then we expect a similar variation of globular cluster abundances over large scales. Significantly, we find that the expected number density of SIGOs is consistent with observed globular cluster number densities.more »
-
Context. Inferences about dark matter, dark energy, and the missing baryons all depend on the accuracy of our model of large-scale structure evolution. In particular, with cosmological simulations in our model of the Universe, we trace the growth of structure, and visualize the build-up of bigger structures from smaller ones and of gaseous filaments connecting galaxy clusters. Aims. Here we aim to reveal the complexity of the large-scale structure assembly process in great detail and on scales from tens of kiloparsecs up to more than 10 Mpc with new sensitive large-scale observations from the latest generation of instruments. We also aim to compare our findings with expectations from our cosmological model. Methods. We used dedicated SRG/eROSITA performance verification (PV) X-ray, ASKAP/EMU Early Science radio, and DECam optical observations of a ~15 deg 2 region around the nearby interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process, the morphological complexity in the inner parts of the clusters, and the (re-)acceleration of plasma. We also used complementary Sunyaev-Zeldovich (SZ) effect data from the Planck survey and custom-made Galactic total (neutral plus molecular) hydrogen column density maps based onmore »
-
Abstract Supersonically induced gas objects (SIGOs) are a class of early universe objects that have gained attention as a potential formation route for globular clusters. SIGOs have recently begun to be studied in the context of molecular hydrogen cooling, which is key to characterizing their structure and evolution. Studying the population-level properties of SIGOs with molecular cooling is important for understanding their potential for collapse and star formation, and for addressing whether SIGOs can survive to the present epoch. Here, we investigate the evolution of SIGOs before they form stars, using a combination of numerical and analytical analysis. We study timescales important to the evolution of SIGOs at a population level in the presence of molecular cooling. Revising the previous formulation for the critical density of collapse for SIGOs allows us to show that their prolateness tends to act as an inhibiting factor to collapse. We find that simulated SIGOs are limited by artificial two-body relaxation effects that tend to disperse them. We expect that SIGOs in nature will be longer lived compared to our simulations. Further, the fall-back timescale on which SIGOs fall into nearby dark matter halos, potentially producing a globular-cluster-like system, is frequently longer than their coolingmore »
-
Abstract We present Symphony, a compilation of 262 cosmological, cold-dark-matter-only zoom-in simulations spanning four decades of host halo mass, from 1011–1015
M ⊙. This compilation includes three existing simulation suites at the cluster and Milky Way–mass scales, and two new suites: 39 Large Magellanic Cloud-mass (1011M ⊙) and 49 strong-lens-analog (1013M ⊙) group-mass hosts. Across the entire host halo mass range, the highest-resolution regions in these simulations are resolved with a dark matter particle mass of ≈3 × 10−7times the host virial mass and a Plummer-equivalent gravitational softening length of ≈9 × 10−4times the host virial radius, on average. We measure correlations between subhalo abundance and host concentration, formation time, and maximum subhalo mass, all of which peak at the Milky Way host halo mass scale. Subhalo abundances are ≈50% higher in clusters than in lower-mass hosts at fixed sub-to-host halo mass ratios. Subhalo radial distributions are approximately self-similar as a function of host mass and are less concentrated than hosts’ underlying dark matter distributions. We compare our results to the semianalytic modelGalacticus , which predicts subhalo mass functions with a higher normalization at the low-mass end and radial distributions that are slightly more concentrated than Symphony. We useUniverseMachine to model halo and subhalo star formationmore »