Abstract A supersonic relative velocity between dark matter (DM) and baryons (the stream velocity) at the time of recombination induces the formation of low-mass objects with anomalous properties in the early universe. We widen the scope of the “Supersonic Project” paper series to include objects we term Dark Matter + Gas Halos Offset by Streaming (DM GHOSts)—diffuse, DM-enriched structures formed because of a physical offset between the centers of mass of DM and baryonic overdensities. We present an updated numerical investigation of DM GHOSts and Supersonically Induced Gas Objects (SIGOs), including the effects of molecular cooling, in high-resolution hydrodynamic simulations using theAREPOcode. Supplemented by an analytical understanding of their ellipsoidal gravitational potentials, we study the population-level properties of these objects, characterizing their morphology, spin, radial mass, and velocity distributions in comparison to classical structures in non-streaming regions. The stream velocity causes deviations from sphericity in both the gas and DM components and lends greater rotational support to the gas. Low-mass (≲105.5M⊙) objects in regions of streaming demonstrate core-like rotation and mass profiles. Anomalies in the rotation and morphology of DM GHOSts could represent an early universe analog to observed ultra-faint dwarf galaxies with variations in DM content and unusual rotation curves. 
                        more » 
                        « less   
                    
                            
                            Globular Clusters and Streaming Velocities: Testing the New Formation Channel in High-resolution Cosmological Simulations
                        
                    
    
            Abstract The formation of globular clusters and their relation to the distribution of dark matter have long puzzled astronomers. One of the most recently proposed globular cluster formation channels ties ancient star clusters to the large-scale streaming velocity of baryons relative to dark matter in the early universe. These streaming velocities affect the global infall of baryons into dark matter halos, the high-redshift halo mass function, and the earliest generations of stars. In some cases, streaming velocities may result in dense regions of dark matter-free gas that becomes Jeans unstable, potentially leading to the formation of compact star clusters. We investigate this hypothesis using cosmological hydrodynamical simulations that include a full chemical network and the formation and destruction of H2, a process crucial for the formation of the first stars. We find that high-density gas in regions with significant streaming velocities is indeed somewhat offset from the centers of dark matter halos, but this offset is typically significantly smaller than the virial radius. Gas outside of dark matter halos never reaches Jeans-unstable densities in our simulations. We postulate that low-level (Z≈ 10−3Z⊙) metal enrichment by Population III supernovae may enable cooling in the extra-virial regions, allowing gas outside of dark matter halos to cool to the cosmic microwave background temperature and become Jeans unstable. Follow-up simulations that include both streaming velocities and metal enrichment by Population III supernovae are needed to understand if streaming velocities provide one path for the formation of globular clusters in the early universe. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10360511
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 922
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 193
- Size(s):
- Article No. 193
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We study how supersonic streaming velocities of baryons relative to dark matter—a large-scale effect imprinted at recombination and coherent over ∼3 Mpc scales—affect the formation of dwarf galaxies atz≳ 5. We perform cosmological hydrodynamic simulations, including and excluding streaming velocities, in regions centered on halos withMvir(z= 0) ≈ 1010M⊙; the simulations are part of the Feedback In Realistic Environments (FIRE) project and run with FIRE-3 physics. Our simulations comprise many thousands of systems with halo masses betweenMvir= 2 × 105M⊙and 2 × 109M⊙in the redshift rangez= 20–5. A few hundred of these galaxies form stars and have stellar masses ranging from 100 to 107M⊙. While star formation is globally delayed by approximately 50 Myr in the streaming relative to nonstreaming simulations and the number of luminous galaxies is correspondingly suppressed at high redshift in the streaming runs, these effects decay with time. Byz= 5, the properties of the simulated galaxies are nearly identical in the streaming versus nonstreaming runs, indicating that any effects of streaming velocities on the properties of galaxies at the mass scale of classical dwarfs and larger do not persist toz= 0.more » « less
- 
            Abstract Supersonically induced gas objects (SIGOs), are structures with little to no dark-matter component predicted to exist in regions of the universe with large relative velocities between baryons and dark matter at the time of recombination. They have been suggested to be the progenitors of present-day globular clusters. Using simulations, SIGOs have been studied on small scales (around 2 Mpc) where these relative velocities are coherent. However, it is challenging to study SIGOs using simulations on large scales due to the varying relative velocities at scales larger than a few Mpc. Here, we study SIGO abundances semi-analytically: using perturbation theory, we predict the number density of SIGOs analytically, and compare these results to small-box numerical simulations. We use the agreement between the numerical and analytic calculations to extrapolate the large-scale variation of SIGO abundances over different stream velocities. As a result, we predict similar large-scale variations of objects with high gas densities before reionization that could possibly be observed by JWST. If indeed SIGOs are progenitors of globular clusters, then we expect a similar variation of globular cluster abundances over large scales. Significantly, we find that the expected number density of SIGOs is consistent with observed globular cluster number densities. As a proof-of-concept, and because globular clusters were proposed to be natural formation sites for gravitational wave sources from binary black-hole mergers, we show that SIGOs should imprint an anisotropy on the gravitational wave signal on the sky, consistent with their distribution.more » « less
- 
            Abstract Supersonically induced gas objects (SIGOs) are a class of early universe objects that have gained attention as a potential formation route for globular clusters. SIGOs have recently begun to be studied in the context of molecular hydrogen cooling, which is key to characterizing their structure and evolution. Studying the population-level properties of SIGOs with molecular cooling is important for understanding their potential for collapse and star formation, and for addressing whether SIGOs can survive to the present epoch. Here, we investigate the evolution of SIGOs before they form stars, using a combination of numerical and analytical analysis. We study timescales important to the evolution of SIGOs at a population level in the presence of molecular cooling. Revising the previous formulation for the critical density of collapse for SIGOs allows us to show that their prolateness tends to act as an inhibiting factor to collapse. We find that simulated SIGOs are limited by artificial two-body relaxation effects that tend to disperse them. We expect that SIGOs in nature will be longer lived compared to our simulations. Further, the fall-back timescale on which SIGOs fall into nearby dark matter halos, potentially producing a globular-cluster-like system, is frequently longer than their cooling timescale and the collapse timescale on which they shrink through gravity. Therefore, some SIGOs have time to cool and collapse outside of halos despite initially failing to exceed the critical density. From this analysis we conclude that SIGOs should form stars outside of halos in nonnegligible stream velocity patches in the universe.more » « less
- 
            Abstract We investigate how stellar feedback from the first stars (Population III) distributes metals through the interstellar and intergalactic medium using the star-by-star cosmological hydrodynamics simulation, Aeos. We find that energy injected from the supernovae (SNe) of the first stars is enough to expel a majority of gas and injected metals beyond the virial radius of halos with massMdm ≲ 107M⊙, regardless of the number of SNe. This prevents self-enrichment and results in a nonmonotonic increase in metallicity at early times. Most minihalos (Mdm ≳ 105M⊙) do not retain significant fractions of the yields produced within their virial radii until they have grown to halo masses ofMdm ≳ 107M⊙. The loss of metals to regions well beyond the virial radius delays the onset of enriched star formation and extends the period that Population III star formation can persist. We also explore the contributions of different nucleosynthetic channels to 10 individual elements. On the timescale of the simulation (lowest redshiftz= 14.3), enrichment is dominated by core-collapse supernovae for all elements, but with a significant contribution from asymptotic giant branch winds to thes-process elements, which are normally thought to only be important at late times. In this work, we establish important mechanisms for early chemical enrichment, which allows us to apply Aeosin later epochs to trace the evolution of enrichment during the complete transition from Population III to Population II stars.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
