skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Little Change in Ice Age Water Mass Structure From Cape Basin Benthic Neodymium and Carbon Isotopes
Abstract

A common conception of the deep ocean during ice age episodes is that the upper circulation cell in the Atlantic was shoaled at the Last Glacial Maximum compared to today, and that this configuration facilitated enhanced carbon storage in the deep ocean, contributing to glacial CO2draw‐down. Here, we test this notion in the far South Atlantic, investigating changes in glacial circulation structure using paired neodymium and benthic carbon isotope measurements from International Ocean Discovery Program Site U1479, at 2,615 m water depth in the Cape Basin. We infer changes in circulation structure across the last glacial cycle by aligning our site with other existing carbon and neodymium isotope records from the Cape Basin, examining vertical isotope gradients, while determining the relative timing of inferred circulation changes at different depths. We find that Site U1479 had the most negative neodymium isotopic composition across the last glacial cycle among the analyzed sites, indicating that this depth was most strongly influenced by North Atlantic Deep Water (NADW) in both interglacial and glacial intervals. This observation precludes a hypothesized dramatic shoaling of NADW above ∼2,000 m. Our evidence, however, indicates greater stratification between mid‐depth and abyssal sites throughout the last glacial cycle, conditions that developed in Marine Isotope Stage 5. These conditions still may have contributed to glacial carbon storage in the deep ocean, despite little change in the mid‐depth ocean structure.

 
more » « less
Award ID(s):
1831415
NSF-PAR ID:
10360512
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
36
Issue:
11
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Site U1587 is the second farthest from shore drilled during Expedition 397 and located at a water depth of 3479 meters below sea level (mbsl) (Figures F1, F2, F3). It is the second deepest site along the bathymetric transect and is bathed today by a mixture of ~75% North Atlantic Deep Water (NADW) and 25% Lower Deep Water (LDW) sourced from the Southern Ocean (Figure F4) (Jenkins et al., 2015). The mixing ratio of these water masses and their vertical position in the water column has changed in the past, which has implications for ventilation and carbon storage in the deep Atlantic Ocean. The location of Site U1587 was motivated by the clear expression of millennial climate variability in proxy records of oxygen isotopes and sea-surface temperature in nearby Piston Core MD95-2042 (Shackleton et al., 2000, 2004; Bard et al., 2000; Pailler and Bard, 2002; Davtian and Bard, 2023). Isotopic, organic biomarker, and pollen results from this core demonstrated the potential of correlating Iberian margin sediments with ice cores from Greenland and Antarctica and with European terrestrial sequences (e.g., Sánchez-Goñi et al., 2000; Margari et al., 2010, 2014, 2020). The sediment record from Site U1587 provides the opportunity to develop sediment proxy records for the Greenland and Antarctic ice cores to the base of the Quaternary and beyond. The piston core (JC089-04-2P) recovered near Site U1587 is 10.7 m long and has a sedimentation rate of 17 cm/ky (Figure F5). Ca/Ti and Zr/Sr show strong evidence of millennial variability during the last glacial cycle. The objective for Site U1587 is to study such variability for older glacial cycles throughout the Quaternary. Site U1587 is located at the intersection of Seismic Lines JC089-6 and JC089-7 (Figure F6). Although mass transport deposits or disturbed intervals are developed nearby, the continuity of reflections is good at Site U1587 (Figures F7, F8). The Upper Miocene to Quaternary sequence at Site U1587 is expanded relative to Site U1586 and is more than 500 m thick. Sedimentation rates are estimated to average ~10 cm/ky at Site U1587, or about twice that of Site U1586. We had permission from the Environmental Protection and Safety Panel (EPSP) to drill to 500 meters below seafloor (mbsf), but we requested and were granted permission to drill an additional 50 m to extend the record well into the late Miocene. Site U1587 provides an expanded sequence of late Miocene to Quaternary sediments with which to address the following objectives: Document how millennial climate variability evolved during the glacial cycles of the Quaternary and Pliocene as boundary conditions changed with the progressive intensification of Northern Hemisphere glaciation (NHG). Reconstruct the history of changing local dominance of northern-sourced versus southern-sourced deep water, as well as ventilation and carbon storage in the deep Atlantic Ocean. Determine interhemispheric phase relationships (leads/lags) by comparing the timing of proxy variables that monitor surface (Greenland) and deepwater (Antarctic) components of the climate system. Investigate climate during past interglacial periods, including the warm Pliocene period prior to the intensification of NHG. Link terrestrial, marine, and ice core records by analyzing pollen and terrestrial biomarkers that are delivered to the deep-sea environment of the Iberian margin. Recover a complete record of the time leading up to, during, and following the Messinian Salinity Crisis, which complements objectives of International Ocean Discovery Program (IODP) Expedition 401 (Flecker et al., 2023) and will permit evaluation of the causes and consequences of this remarkable event in Earth's history. Develop an orbitally-tuned age model for Site U1587 by correlating physical properties to eccentricity-modulated precession and tying them into the record of Mediterranean cyclostratigraphy. 
    more » « less
  2. Benthic foraminifera are used to generate the majority of paleo-proxy records reconstructing past ocean changes including variations in the strength of AMOC. To assess the reliability of geochemical proxy records generated using benthic foraminifera, a Foraminifera Preservation Index (FPI) was developed to quantify assemblage-wide changes in visual preservation quality. The qualitative criteria for preservation included in the FPI are supported by stable isotope and trace element datasets. Early application of the FPI on Cibicidoidesassemblages from the deep Pacific Ocean (IODP Sites 846, 1143, 1208) reveal quantifiably better preservation during glacial periods relative to interglacial periods for the last ~1 million years. Here, we present results from two summer REU projects tracking such preservation changes in the deep North and South Atlantic Ocean prior to and throughout the last deglaciation (~0-35 ka). Changes in Cibicidoides FPI from IODP Site 1089 in the deep South Atlantic (~4600m water depth: primarily bathed by Antarctic Bottom Water - AABW) mirror those in the Pacific with better preservation during the glacial maximum of Marine Isotope Stage (MIS 2) than the Holocene interglacial (MIS 1). Alternatively, Cibicidoides FPI from IODP Site 1059 (~3000m water depth: bathed by North Atlantic Deep Water [NADW] during interglacials; and by AABW during glacials) reveal better preservation during the Holocene relative to MIS 2. Despite these opposing trends, changes in FPI occur at both sites at ~15 ka corresponding to major changes to AMOC documented throughout the deep Atlantic basin. These findings imply that the same processes involved in water mass CO2-carbonate chemistry on glacial-interglacial timescales affect preservation of benthic foraminifera. Furthermore, our results suggest that the FPI can track major changes in deglacial AMOC, potentially providing an inexpensive method to produce preliminary data prior to or in unison with more expensive geochemical analyses. 
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediment to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm period, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition (MPT), and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss. We will also address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea between the Pirie Basin (Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water mass production, ocean–atmosphere CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate dust-climate couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the MPT. The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the northern limit of the Scotia Sea is to reconstruct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins, the “cold water route.” The Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we recovered continuously deposited sediments from this drift spanning the late Pleistocene (from ~0.78 Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites are expected to yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean, track migrations of the Subantarctic Front, and give insights into the role and evolution of the cold water route over significant climate episodes, including the following: • The most recent warm interglacials of the late Pleistocene and • The intensification of Northern Hemisphere glaciation. 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program Expedition 382, Iceberg Alley and Subantarctic Ice and Ocean Dynamics, investigated the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in insolation and atmospheric CO2 in the past and how ice sheet evolution influenced global sea level and vice versa. Five sites (U1534–U1538) were drilled east of the Drake Passage: two sites at 53.2°S at the northern edge of the Scotia Sea and three sites at 57.4°–59.4°S in the southern Scotia Sea. We recovered continuously deposited late Neogene sediments to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. The sites from the southern Scotia Sea (Sites U1536–U1538) will be used to study the Neogene flux of icebergs through “Iceberg Alley,” the main pathway along which icebergs calved from the margin of the AIS travel as they move equatorward into the warmer waters of the Antarctic Circumpolar Current (ACC). In particular, sediments from this area will allow us to assess the magnitude of iceberg flux during key times of AIS evolution, including the following: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm period, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition (MPT), and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss. We will also address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea between the Pirie Basin (Site U1538) and the Dove Basin (Sites U1536 and U1537), Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water mass production, ocean–atmosphere CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate dust-climate couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the MPT. The principal scientific objective of Subantarctic Front Sites U1534 and U1535 at the northern limit of the Scotia Sea is to reconstruct and understand how intermediate water formation in the southwest Atlantic responds to changes in connectivity between the Atlantic and Pacific basins, the “cold water route.” The Subantarctic Front contourite drift, deposited between 400 and 2000 m water depth on the northern flank of an east–west trending trough off the Chilean continental shelf, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front. During Expedition 382, we recovered continuously deposited sediments from this drift spanning the late Pleistocene (from ~0.78 Ma to recent) and from the late Pliocene (~3.1–2.6 Ma). These sites are expected to yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean, track migrations of the Subantarctic Front, and give insights into the role and evolution of the cold water route over significant climate episodes, including the following: • The most recent warm interglacials of the late Pleistocene and • The intensification of Northern Hemisphere glaciation. 
    more » « less
  5. null (Ed.)
    The tectonic and paleoceanographic setting of the Great Australian Bight (GAB) and the Mentelle Basin (MB; adjacent to Naturaliste Plateau) offered an outstanding opportunity to investigate Cretaceous and Cenozoic climate change and ocean dynamics during the last phase of breakup among remnant Gondwana continents. Sediment recovered from sites in both regions during International Ocean Discovery Program Expedition 369 will provide a new perspective on Earth’s temperature variation at sub-polar latitudes (60°–62°S) across the extremes of the mid-Cretaceous hot greenhouse climate and the cooling that followed. The primary goals of the expedition were to • Investigate the timing and causes for the rise and collapse of the Cretaceous hot greenhouse climate and how this climate mode affected the climate-ocean system and oceanic biota; • Determine the relative roles of productivity, ocean temperature, and ocean circulation at high southern latitudes during Cretaceous oceanic anoxic events (OAEs); • Identify the main source regions for deep-water and intermediate-water masses in the southeast Indian Ocean and how these changed during Gondwana breakup; • Characterize how oceanographic conditions at the MB changed during the Cenozoic opening of the Tasman Passage and restriction of the Indonesian Gateway; • Resolve questions on the volcanic and sedimentary origins of the Australo-Antarctic Gulf and Mentelle Basin and provide stratigraphic control on the age and nature of the prebreakup successions. Hole U1512A in the GAB recovered a 691 m thick sequence of black claystone ranging from the early Turonian to the early Campanian. Age control is primarily based on calcareous nannofossils, but the presence of other microfossil groups provided consistent but low-resolution control. Despite the lithologic uniformity, long- and short-term variations in natural gamma ray and magnetic susceptibility intensities show cyclic alternations that suggest an orbital control of sediment deposition that will be useful for developing an astrochronology for the sequence. Sites U1513–U1516 were drilled between 850 and 3900 m water depth in the MB and penetrated 774, 517, 517, and 542 meters below seafloor (mbsf), respectively. Under a thin layer of Pleistocene–upper Miocene sediment, Site U1513 cored a succession of Cretaceous units from the Campanian to the Valanginian. Site U1514 sampled an expanded Pleistocene–Eocene sequence and terminated in the upper Albian. The Cenomanian–Turonian interval at Site U1514 recovered deformed sedimentary rocks that probably represent a detachment zone. Site U1515 is located on the west Australian margin at 850 m water depth and was the most challenging site to core because much of the upper 350 m was either chert or poorly consolidated sand. However, the prebreakup Jurassic(?) sediments interpreted from the seismic profiles were successfully recovered. Site U1516 cored an expanded Pleistocene, Neogene, and Paleogene section and recovered a complete Cenomanian/Turonian boundary interval containing five layers with high total organic carbon content. Recovery of well-preserved calcareous microfossil assemblages from different paleodepths will enable generation of paleotemperature and biotic records that span the rise and collapse of the Cretaceous hot greenhouse (including OAEs 1d and 2), providing insight to resultant changes in deep-water and surface water circulation that can be used to test predictions from earth system models. Paleotemperature proxies and other data will reveal the timing, magnitude, and duration of peak hothouse temperatures and any cold snaps that could have allowed growth of a polar ice sheet. The sites will also record the mid-Eocene–early Oligocene opening of the Tasman Gateway and the Miocene–Pliocene restriction of the Indonesian Gateway; both passages have important effects on global oceanography and climate. Understanding the paleoceanographic changes in a regional context provides a global test on models of Cenomanian–Turonian oceanographic and climatic evolution related both to extreme Turonian warmth and the evolution of OAE 2. The Early Cretaceous volcanic rocks and underlying Jurassic(?) sediments cored in different parts of the MB provide information on the timing of different stages of the Gondwana breakup. The recovered cores provide sufficient new age constraints to underpin a reevaluation of the basin-wide seismic stratigraphy and tectonic models for the region. 
    more » « less