skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Little Change in Ice Age Water Mass Structure From Cape Basin Benthic Neodymium and Carbon Isotopes
Abstract A common conception of the deep ocean during ice age episodes is that the upper circulation cell in the Atlantic was shoaled at the Last Glacial Maximum compared to today, and that this configuration facilitated enhanced carbon storage in the deep ocean, contributing to glacial CO2draw‐down. Here, we test this notion in the far South Atlantic, investigating changes in glacial circulation structure using paired neodymium and benthic carbon isotope measurements from International Ocean Discovery Program Site U1479, at 2,615 m water depth in the Cape Basin. We infer changes in circulation structure across the last glacial cycle by aligning our site with other existing carbon and neodymium isotope records from the Cape Basin, examining vertical isotope gradients, while determining the relative timing of inferred circulation changes at different depths. We find that Site U1479 had the most negative neodymium isotopic composition across the last glacial cycle among the analyzed sites, indicating that this depth was most strongly influenced by North Atlantic Deep Water (NADW) in both interglacial and glacial intervals. This observation precludes a hypothesized dramatic shoaling of NADW above ∼2,000 m. Our evidence, however, indicates greater stratification between mid‐depth and abyssal sites throughout the last glacial cycle, conditions that developed in Marine Isotope Stage 5. These conditions still may have contributed to glacial carbon storage in the deep ocean, despite little change in the mid‐depth ocean structure.  more » « less
Award ID(s):
1831415
PAR ID:
10360512
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
36
Issue:
11
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The mid-Pleistocene transition (MPT) [~1.25 to 0.85 million years ago (Ma)] marks a shift in the character of glacial-interglacial climate. One prevailing hypothesis for the origin of the MPT is that glacial deep ocean circulation fundamentally changed, marked by a circulation “crisis” at ~0.90 Ma (marine isotope stages 24 to 22). Using high-resolution paired neodymium, carbon, and oxygen isotope data from the South Atlantic Ocean (Cape Basin) across the MPT, we find no evidence of a substantial change in deep ocean circulation. Before and during the early MPT (~1.30 to 1.12 Ma), the glacial deep ocean variability closely resembled that of the most recent glacial cycle. The carbon storage facilitated by developing deep ocean stratification across the MPT required only modest circulation adjustments. 
    more » « less
  2. Benthic foraminifera are used to generate the majority of paleo-proxy records reconstructing past ocean changes including variations in the strength of AMOC. To assess the reliability of geochemical proxy records generated using benthic foraminifera, a Foraminifera Preservation Index (FPI) was developed to quantify assemblage-wide changes in visual preservation quality. The qualitative criteria for preservation included in the FPI are supported by stable isotope and trace element datasets. Early application of the FPI on Cibicidoidesassemblages from the deep Pacific Ocean (IODP Sites 846, 1143, 1208) reveal quantifiably better preservation during glacial periods relative to interglacial periods for the last ~1 million years. Here, we present results from two summer REU projects tracking such preservation changes in the deep North and South Atlantic Ocean prior to and throughout the last deglaciation (~0-35 ka). Changes in Cibicidoides FPI from IODP Site 1089 in the deep South Atlantic (~4600m water depth: primarily bathed by Antarctic Bottom Water - AABW) mirror those in the Pacific with better preservation during the glacial maximum of Marine Isotope Stage (MIS 2) than the Holocene interglacial (MIS 1). Alternatively, Cibicidoides FPI from IODP Site 1059 (~3000m water depth: bathed by North Atlantic Deep Water [NADW] during interglacials; and by AABW during glacials) reveal better preservation during the Holocene relative to MIS 2. Despite these opposing trends, changes in FPI occur at both sites at ~15 ka corresponding to major changes to AMOC documented throughout the deep Atlantic basin. These findings imply that the same processes involved in water mass CO2-carbonate chemistry on glacial-interglacial timescales affect preservation of benthic foraminifera. Furthermore, our results suggest that the FPI can track major changes in deglacial AMOC, potentially providing an inexpensive method to produce preliminary data prior to or in unison with more expensive geochemical analyses. 
    more » « less
  3. Abundant proxy records suggest a profound reorganization of the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM, ~21,000 y ago), with the North Atlantic Deep Water (NADW) shoaling significantly relative to the present-day (PD) and forming Glacial North Atlantic Intermediate Water (GNAIW). However, almost all previous observational and modeling studies have focused on the zonal mean two-dimensional AMOC feature, while recent progress in the understanding of modern AMOC reveals a more complicated three-dimensional structure, with NADW penetrating from the subpolar North Atlantic to lower latitude through different pathways. Here, combining231Pa/230Th reconstructions and model simulations, we uncover a significant change in the three-dimensional structure of the glacial AMOC. Specifically, the mid-latitude eastern pathway (EP), located east of the Mid-Atlantic Ridge and transporting about half of the PD NADW from the subpolar gyre to the subtropical gyre, experienced substantial intensification during the LGM. A greater portion of the GNAIW was transported in the eastern basin during the LGM compared to NADW at the PD, resulting in opposite231Pa/230Th changes between eastern and western basins during the LGM. Furthermore, in contrast to the wind-steering mechanism of EP at PD, the intensified LGM EP was caused primarily by the rim current forced by the basin-scale open-ocean convection over the subpolar North Atlantic. Our results underscore the importance of accounting for three-dimensional oceanographic changes to achieve more accurate reconstructions of past AMOC. 
    more » « less
  4. Abstract Reconstructing the circulation, mixing and carbon content of the Last Glacial Maximum ocean remains challenging. Recent hypotheses suggest that a shoaled Atlantic meridional overturning circulation or increased stratification would have reduced vertical mixing, isolated the abyssal ocean and increased carbon storage, thus contributing to lower atmospheric CO2concentrations. Here, using an ensemble of ocean simulations, we evaluate impacts of changes in tidal energy dissipation due to lower sea levels on ocean mixing, circulation, and carbon isotope distributions. We find that increased tidal mixing strengthens deep ocean flow rates and decreases vertical gradients of radiocarbon andδ13C in the deep Atlantic. Simulations with a shallower overturning circulation and more vigorous mixing fit sediment isotope data best. Our results, which are conservative, provide observational support that vertical mixing in the glacial Atlantic may have been enhanced due to more vigorous tidal dissipation, despite shoaling of the overturning circulation and increases in stratification. 
    more » « less
  5. Abstract A toy model for the deep ocean overturning circulation in multiple basins is presented and applied to study the role of buoyancy forcing and basin geometry in the ocean’s global overturning. The model reproduces the results from idealized general circulation model simulations and provides theoretical insights into the mechanisms that govern the structure of the overturning circulation. The results highlight the importance of the diabatic component of the meridional overturning circulation (MOC) for the depth of North Atlantic Deep Water (NADW) and for the interbasin exchange of deep ocean water masses. This diabatic component, which extends the upper cell in the Atlantic below the depth of adiabatic upwelling in the Southern Ocean, is shown to be sensitive to the global area-integrated diapycnal mixing rate and the density contrast between NADW and Antarctic Bottom Water (AABW). The model also shows that the zonally averaged global overturning circulation is to zeroth-order independent of whether the ocean consists of one or multiple connected basins, but depends on the total length of the southern reentrant channel region (representing the Southern Ocean) and the global ocean area integrated diapycnal mixing. Common biases in single-basin simulations can thus be understood as a direct result of the reduced domain size. 
    more » « less