skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The meta-gut: community coalescence of animal gut and environmental microbiomes
Abstract All animals carry specialized microbiomes, and their gut microbiota are continuously released into the environment through excretion of waste. Here we propose themeta-gutas a novel conceptual framework that addresses the ability of the gut microbiome released from an animal to function outside the host and alter biogeochemical processes mediated by microbes. We demonstrate this dynamic in the hippopotamus (hippo) and the pools they inhabit. We used natural field gradients and experimental approaches to examine fecal and pool water microbial communities and aquatic biogeochemistry across a range of hippo inputs. Sequencing using 16S RNA methods revealed community coalescence between hippo gut microbiomes and the active microbial communities in hippo pools that received high inputs of hippo feces. The shared microbiome between the hippo gut and the waters into which they excrete constitutes ameta-gutsystem that could influence the biogeochemistry of recipient ecosystems and provide a reservoir of gut microbiomes that could influence other hosts. We propose thatmeta-gutdynamics may also occur where other animal species congregate in high densities, particularly in aquatic environments.  more » « less
Award ID(s):
1753727 2103884
PAR ID:
10360518
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. {"Abstract":["This is the data and R code necessary to reproduce the findings in the manuscript, "The meta-gut: community coalescence of animal gut and environmental microbiomes."\n\nHippo pool biogeochemistry and fecal and pool water microbial communities were examined through field sampling and an experiment. Sequencing using 16S RNA methods revealed that the active microbial communities in hippo pools that received high inputs of hippo feces are more similar to the hippo gut microbiome than other nearby aquatic environments. The overlap between the microbiomes of the hippo gut and the waters into which they excrete therefore constitutes a meta-gut system with potentially strong influence on the biogeochemistry of pools and downstream waters. We propose that the meta-gut may be present where other species congregate in high densities, particularly in aquatic environments, and share gut microbiota between individuals."]} 
    more » « less
  2. Abstract Animals often shape environmental microbial communities, which can in turn influence animal gut microbiomes. Invasive species in critical habitats may reduce grazing pressure from native species and shift microbial communities. The landlocked coastal ponds, pools, and caves that make up the Hawaiian anchialine ecosystem support an endemic shrimp (Halocaridina rubra) that grazes on diverse benthic microbial communities, including orange cyanobacterial‐bacterial crusts and green algal mats. Here, we asked how shrimp: (1) shape the abundance and composition of microbial communities, (2) respond to invasive fishes, and (3) whether their gut microbiomes are affected by environmental microbial communities. We demonstrate that ecologically relevant levels of shrimp grazing significantly reduce epilithon biomass. Shrimp grazed readily and grew well on both orange crusts and green mat communities. However, individuals from orange crusts were larger, despite crusts having reduced concentrations of key fatty acids. DNA profiling revealed shrimp harbor a resident gut microbiome distinct from the environment, which is relatively simple and stable across space (including habitats with different microbial communities) and time (between wild‐caught individuals and those maintained in the laboratory for >2 yr). DNA profiling also suggests shrimp grazing alters environmental microbial community composition, possibly through selective consumption and/or physical interactions. While this work suggests grazing by endemic shrimp plays a key role in shaping microbial communities in the Hawaiian anchialine ecosystem, the hypothesized drastic ecological shifts resulting from invasive fishes may be an oversimplification as shrimp may largely avoid predation. Moreover, environmental microbial communities may have little influence on shrimp gut microbiomes. 
    more » « less
  3. Johnson, Karyn N. (Ed.)
    ABSTRACT Leeches are found in terrestrial, aquatic, and marine habitats on all continents. Sanguivorous leeches have been used in medicine for millennia. Modern scientific uses include studies of neurons, anticoagulants, and gut microbial symbioses. Hirudo verbana , the European medicinal leech, maintains a gut community dominated by two bacterial symbionts, Aeromonas veronii and Mucinivorans hirudinis , which sometimes account for as much as 97% of the total crop microbiota. The highly simplified gut anatomy and microbiome of H. verbana make it an excellent model organism for studying gut microbial dynamics. The North American medicinal leech, Macrobdella decora , is a hirudinid leech native to Canada and the northern United States. In this study, we show that M. decora symbiont communities are very similar to those in H. verbana. We performed an extensive study using field-caught M. decora and purchased H. verbana from two suppliers. Deep sequencing of the V4 region of the 16S rRNA gene allowed us to determine that the core microbiome of M. decora consists of Bacteroides , Aeromonas, Proteocatella , and Butyricicoccus. The analysis revealed that the compositions of the gut microbiomes of the two leech species were significantly different at all taxonomic levels. The R 2 value was highest at the genus and amplicon sequence variant (ASV) levels and much lower at the phylum, class, and order levels. The gut and bladder microbial communities were distinct. We propose that M. decora is an alternative to H. verbana for studies of wild-caught animals and provide evidence for the conservation of digestive-tract and bladder symbionts in annelid models. IMPORTANCE Building evidence implicates the gut microbiome in critical animal functions such as regulating digestion, nutrition, immune regulation, and development. Simplified, phylogenetically diverse models for hypothesis testing are necessary because of the difficulty of assigning causative relationships in complex gut microbiomes. Previous research used Hirudo verbana as a tractable animal model of digestive-tract symbioses. Our data show that Macrobdella decora may work just as well without the drawback of being an endangered organism and with the added advantage of easy access to field-caught specimens. The similarity of the microbial community structures of species from two different continents reveals the highly conserved nature of the microbial symbionts in sanguivorous leeches. 
    more » « less
  4. Schloss, P. D. (Ed.)
    ABSTRACT The European honey bee ( Apis mellifera ) is used extensively to produce hive products and for crop pollination, but pervasive concerns about colony health and population decline have sparked an interest in the microbial communities that are associated with these important insects. Currently, only the microbiome of workers has been characterized, while little to nothing is known about the bacterial communities that are associated with queens, even though their health and proper function are central to colony productivity. Here, we provide a large-scale analysis of the gut microbiome of honey bee queens during their developmental trajectory and through the multiple colonies that host them as part of modern queen-rearing practices. We found that queen microbiomes underwent a dramatic shift in size and composition as they aged and encountered different worker populations and colony environments. Queen microbiomes were dominated by enteric bacteria in early life but were comprised primarily of alphaproteobacteria at maturity. Furthermore, queen gut microbiomes did not reflect those of the workers who tended them and, indeed, they lacked many of the bacteria that are considered vital to workers. While worker gut microbiotas were consistent across the unrelated colony populations sampled, the microbiotas of the related queens were highly variable. Bacterial communities in mature queen guts were similar in size to those of mature workers and were characterized by dominant and specific alphaproteobacterial strains known to be associated with worker hypopharyngeal glands. Our results suggest a model in which queen guts are colonized by bacteria from workers' glands, in contrast to routes of maternal inoculation for other animal microbiomes. 
    more » « less
  5. AbstractThe animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest. Despite their potential, gut microbes are largely untapped for secondary metabolites, with gut fungi and obligate anaerobes being particularly under-explored. To advance understanding of these metabolites, culture-based and (meta)genome-based approaches are essential. Culture-based approaches enable isolation, cultivation, and direct study of gut microbes, and (meta)genome-based approaches utilizeinsilicotools to mine biosynthetic gene clusters (BGCs) from microbes that have not yet been successfully cultured. In this mini-review, we highlight recent innovations in this area, including anaerobic biofoundries like ExFAB, the NSF BioFoundry for Extreme & Exceptional Fungi, Archaea, and Bacteria. These facilities enable high-throughput workflows to study oxygen-sensitive microbes and biosynthetic machinery. Such recent advances promise to improve our understanding of the gut microbiome and its secondary metabolism. Key points• Gut microbial secondary metabolites have therapeutic and biotechnological potential• Culture- and (meta)genome-based workflows drive gut anaerobe metabolite discovery• Anaerobic biofoundries enable high-throughput workflows for metabolite discovery Graphical abstract 
    more » « less