skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Image‐guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies
Abstract While plasma concentration kinetics has traditionally been the predictor of drug pharmacological effects, it can occasionally fail to represent kinetics at the site of action, particularly for solid tumors. This is especially true in the case of delivery of therapeutic macromolecules (drug‐loaded nanomaterials or monoclonal antibodies), which can experience challenges to effective delivery due to particle size‐dependent diffusion barriers at the target site. As a result, disparity between therapeutic plasma kinetics and kinetics at the site of action may exist, highlighting the importance of target site concentration kinetics in determining the pharmacodynamic effects of macromolecular therapeutic agents. Assessment of concentration kinetics at the target site has been facilitated by non‐invasive in vivo imaging modalities. This allows for visualization and quantification of the whole‐body disposition behavior of therapeutics that is essential for a comprehensive understanding of their pharmacokinetics and pharmacodynamics. Quantitative non‐invasive imaging can also help guide the development and parameterization of mathematical models for descriptive and predictive purposes. Here, we present a review of the application of state‐of‐the‐art imaging modalities for quantitative pharmacological evaluation of therapeutic nanoparticles and monoclonal antibodies, with a focus on their integration with mathematical models, and identify challenges and opportunities. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic DiseaseDiagnostic Tools > in vivo Nanodiagnostics and ImagingNanotechnology Approaches to Biology > Nanoscale Systems in Biology  more » « less
Award ID(s):
1930583
PAR ID:
10360552
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Nanomedicine and Nanobiotechnology
Volume:
12
Issue:
5
ISSN:
1939-5116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Therapeutic antibodies, due to their high affinity and specificity toward their biological targets, may demonstrate reduced harmful side effects compared with traditional drug moieties. While most of the as‐yet clinically approved antibody therapeutics have targeted extracellular or membrane‐bound domains, the ability to target intracellular antigens with antibodies opens up tremendous opportunities for imaging, diagnosis, and therapeutic applications. Generally, delivery concerns have limited the ability to target intracellular antigens, as many antibodies cannot easily cross the cell membrane due to their size and surface chemistry. Delivery platforms have been explored to address this issue, including physical methods, fusion protein/peptide techniques, and synthetic carrier‐based systems. This review summarizes the progress of carrier‐based intracellular antibody delivery systems employing synthetic lipids, polymers, and inorganic nanomaterials. Antibodies targeting various epitopes have been loaded through adsorption, conjugation, or physical encapsulation strategies. Successful intracellular deliveries have been demonstrated largely through fluorescence imaging using dye‐labeled antibody cargos. Specific synthetic delivery platforms have great potential for ex vivo and in vivo therapeutic applications. Challenges and opportunities are further discussed for material scientists to explore in this research area. 
    more » « less
  2. Abstract Recent advances in nanotechnology have enabled rapid progress in many areas of biomedical research, including drug delivery, targeted therapies, imaging, and sensing. The emerging field of DNA nanotechnology, in which oligonucleotides are designed to self‐assemble into programmable 2D and 3D nanostructures, offers great promise for further advancements in biomedicine. DNA nanostructures present highly addressable and functionally diverse platforms for biological applications due to their ease of construction, controllable architecture and size/shape, and multiple avenues for chemical modification. Both supramolecular and covalent modification with small molecules and polymers have been shown to expand or enhance the functions of DNA nanostructures in biological contexts. These alterations include the addition of small molecule, protein, or nucleic acid moieties that enable structural stability under physiological conditions, more efficient cellular uptake and targeting, delivery of various molecular cargos, stimulus‐responsive behaviors, or modulation of a host immune response. Herein, various types of DNA nanostructure modifications and their functional consequences are examined, followed by a brief discussion of the future opportunities for functionalized DNA nanostructures as well as the barriers that must be overcome before their translational use. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in BiologyTherapeutic Approaches and Drug Discovery > Emerging TechnologiesBiology‐Inspired Nanomaterials > Nucleic Acid‐Based Structures 
    more » « less
  3. The porosity, order, biocompatibility, and chirality of protein crystals has motivated interest from diverse research domains including materials science, biotechnology, and medicine. Porous protein crystals have the unusual potential to organize guest molecules within highly ordered scaffolds, enabling applications ranging from biotemplating and catalysis to biosensing and drug delivery. Significant research has therefore been directed toward characterizing protein crystal materials in hopes of optimizing crystallization, scaffold stability, and application efficacy. In this overview article, we describe recent progress in the field of protein crystal materials with special attention given to applications in nanomedicine and nanobiotechnology. This article is categorized under:Biology‐Inspired Nanomaterials > Protein and Virus‐Based StructuresTherapeutic Approaches and Drug Discovery > Emerging TechnologiesToxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials 
    more » « less
  4. Abstract Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense‐and‐respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life‐like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under:Therapeutic Approaches and Drug Discovery > Emerging TechnologiesBiology‐Inspired Nanomaterials > Lipid‐Based Structures 
    more » « less
  5. Abstract Micro‐sized magnetic particles (also known as microrobots [MRs]) have recently been shown to have potential applications for numerous biomedical applications like drug delivery, microengineering, and single cell manipulation. Interdisciplinary studies have demonstrated the ability of these tiny particles to actuate under the action of a controlled magnetic field that not only drive MRs in a desired trajectory but also precisely deliver therapeutic payload to the target site. Additionally, optimal concentrations of therapeutic molecules can also be delivered to the desired site which is cost‐effective and safe especially in scenarios where drug dose‐related side effects are a concern. In this study, MRs are used to deliver anticancer drugs (doxorubicin) to cancer cells and subsequent cell death is evaluated in different cell lines (liver, prostate, and ovarian cancer cells). Cytocompatibility studies show that MRs are well‐tolerated and internalized by cancer cells. Doxorubicin (DOX) is chemically conjugated with MRs (DOX‐MRs) and magnetically steered toward cancer cells using the magnetic controller. Time‐lapsed video shows that cells shrink and eventually die when MRs are internalized by cells. Taken together, this study confirms that microrobots are promising couriers for targeted delivery of therapeutic biomolecules for cancer therapy and other non‐invasive procedures that require precise control. 
    more » « less