skip to main content


Title: Quantifying and controlling bond multivalency for advanced nanoparticle targeting to cells
Abstract

Nanoparticles have drawn intense interest as delivery agents for diagnosing and treating various cancers. Much of the early success was driven by passive targeting mechanisms such as the enhanced permeability and retention (EPR) effect, but this has failed to lead to the expected clinical successes. Active targeting involves binding interactions between the nanoparticle and cancer cells, which promotes tumor cell-specific accumulation and internalization. Furthermore, nanoparticles are large enough to facilitate multiple bond formation, which can improve adhesive properties substantially in comparison to the single bond case. While multivalent binding is universally believed to be an attribute of nanoparticles, it is a complex process that is still poorly understood and difficult to control. In this review, we will first discuss experimental studies that have elucidated roles for parameters such as nanoparticle size and shape, targeting ligand and target receptor densities, and monovalent binding kinetics on multivalent nanoparticle adhesion efficiency and cellular internalization. Although such experimental studies are very insightful, information is limited and confounded by numerous differences across experimental systems. Thus, we focus the second part of the review on theoretical aspects of binding, including kinetics, biomechanics, and transport physics. Finally, we discuss various computational and simulation studies of nanoparticle adhesion, including advanced treatments that compare directly to experimental results. Future work will ideally continue to combine experimental data and advanced computational studies to extend our knowledge of multivalent adhesion, as well as design the most powerful nanoparticle-based agents to treat cancer.

 
more » « less
Award ID(s):
1929565
NSF-PAR ID:
10360586
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Nano Convergence
Volume:
8
Issue:
1
ISSN:
2196-5404
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    How nanoparticle (NP) mechanical properties impact multivalent ligand–receptor‐mediated binding to cell surfaces, the avidity, propensity for internalization, and effects due to crowding remains unknown or unquantified. Through computational analyses, the effects of NP composition from soft, deformable NPs to rigid spheres, effect of tethers, the crowding of NPs at the membrane surface, and the cell membrane properties such as cytoskeletal interactions are addressed. Analyses of binding mechanisms of three distinct NPs that differ in type and rigidity (core‐corona flexible NP, rigid NP, and rigid‐tethered NP) but are otherwise similar in size and ligand surface density are reported; moreover, for the case of flexible NP, NP stiffness is tuned by varying the internal crosslinking density. Biophysical modeling of NP binding to membranes together with thermodynamic analysis powered by free energy calculations is employed, and it is shown that efficient cellular targeting and uptake of NP functionalized with targeting ligand molecules can be shaped by factors including NP flexibility and crowding, receptor–ligand binding avidity, state of the membrane cytoskeleton, and curvature inducing proteins. Rational design principles that confer tension, membrane excess area, and cytoskeletal sensing properties to the NP which can be exploited for cell‐specific targeting of NP are uncovered.

     
    more » « less
  2. Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of in vitro models of bone metastasis of cancer. 
    more » « less
  3. Abstract

    There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.

     
    more » « less
  4. Abstract

    Many new technologies, such as cancer microenvironment‐induced nanoparticle targeting and multivalent ligand approach for cell surface receptors, are developed for active targeting in cancer therapy. While the principle of each technology is well illustrated, most systems suffer from low targeting specificity and sensitivity. To fill the gap, this work demonstrates a successful attempt to combine both technologies to simultaneously improve cancer cell targeting sensitivity and specificity. Specifically, the main component is a targeting ligand conjugated self‐assembling monomer precursor (SAM‐P), which, at the tumor site, undergoes tumor‐triggered cleavage to release the active form of self‐assembling monomer capable of forming supramolecular nanostructures. Biophysical characterization confirms the chemical and physical transformation of SAM‐P from unimers or oligomers with low ligand valency to supramolecular assemblies with high ligand valency under a tumor‐mimicking reductive microenvironment. The in vitro fluorescence assay shows the importance of supramolecular morphology in mediating ligand–receptor interactions and targeting sensitivity. Enhanced targeting specificity and sensitivity can be achieved via tumor‐triggered supramolecular assembly and induces multivalent ligand presentation toward cell surface receptors, respectively. The results support this combined tumor microenvironment‐induced cell targeting and multivalent ligand display approach, and have great potential for use as cell‐specific molecular imaging and therapeutic agents with high sensitivity and specificity.

     
    more » « less
  5. Abstract

    Small‐molecule drugs are used extensively in clinics for cancer treatment; however, many antitumor chemical drugs dissolve poorly in aqueous solution. Their poor solubility and nonselective delivery in vivo often cause severe side effects. Here, the application of RNA nanotechnology to enhance the solubility of hydrophobic drugs, using camptothecin (CPT) for proof‐of‐concept in targeted delivery for cancer treatment is reported. Multiple CPT prodrug molecules are conjugated to RNA oligos via a click reaction, and the resulting CPT‐RNA conjugates efficiently self‐assemble into thermodynamically stable RNA three‐way junction (3WJ) nanoparticles. The RNA 3WJ is covalently linked with seven hydrophobic CPT prodrug molecules through cleavable ester bonds and a folic acid ligand for specific tumor targeting while remaining soluble in aqueous solutions without detectable aggregation at therapeutic dose. This CPT‐RNA nanoparticle exhibits efficient and specific cell binding and internalization, leading to cell apoptosis. Tumor growth is effectively inhibited by CPT‐RNA nanoparticles; the targeted delivery, strengthened by tumor ligand, further enhances tumor suppression. Compared with the traditional formulation, solubilization of CPT in aqueous buffer using RNA nanoparticles as a carrier is found to be safe and efficacious, demonstrating that RNA nanoparticles are a promising platform for the solubilization and the delivery of hydrophobic antitumor drugs.

     
    more » « less