skip to main content


Title: Serine protease dynamics revealed by NMR analysis of the thrombin-thrombomodulin complex
Abstract

Serine proteases catalyze a multi-step covalent catalytic mechanism of peptide bond cleavage. It has long been assumed that serine proteases including thrombin carry-out catalysis without significant conformational rearrangement of their stable two-β-barrel structure. We present nuclear magnetic resonance (NMR) and hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments on the thrombin-thrombomodulin (TM) complex. Thrombin promotes procoagulative fibrinogen cleavage when fibrinogen engages both the anion binding exosite 1 (ABE1) and the active site. It is thought that TM promotes cleavage of protein C by engaging ABE1 in a similar manner as fibrinogen. Thus, the thrombin-TM complex may represent the catalytically active, ABE1-engaged thrombin. Compared to apo- and active site inhibited-thrombin, we show that thrombin-TM has reduced μs-ms dynamics in the substrate binding (S1) pocket consistent with its known acceleration of protein C binding. Thrombin-TM has increased μs-ms dynamics in a β-strand connecting the TM binding site to the catalytic aspartate. Finally, thrombin-TM had doublet peaks indicative of dynamics that are slow on the NMR timescale in residues along the interface between the two β-barrels. Such dynamics may be responsible for facilitating the N-terminal product release and water molecule entry that are required for hydrolysis of the acyl-enzyme intermediate.

 
more » « less
NSF-PAR ID:
10360587
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanistic understanding of DNA recombination in the Cre-loxPsystem has largely been guided by crystallographic structures of tetrameric synaptic complexes. Those studies have suggested a role for protein conformational dynamics that has not been well characterized at the atomic level. We used solution nuclear magnetic resonance (NMR) spectroscopy to discover the link between intrinsic flexibility and function in Cre recombinase. Transverse relaxation-optimized spectroscopy (TROSY) NMR spectra show the N-terminal and C-terminal catalytic domains (CreNTDand CreCat) to be structurally independent. Amide15N relaxation measurements of the CreCatdomain reveal fast-timescale dynamics in most regions that exhibit conformational differences in active and inactive Cre protomers in crystallographic tetramers. However, the C-terminal helix αN, implicated in assembly of synaptic complexes and regulation of DNA cleavage activity viatransprotein–protein interactions, is unexpectedly rigid in free Cre. Chemical shift perturbations and intra- and intermolecular paramagnetic relaxation enhancement (PRE) NMR data reveal an alternative autoinhibitory conformation for the αN region of free Cre, wherein it packsin cisover the protein DNA binding surface and active site. Moreover, binding toloxPDNA induces a conformational change that dislodges the C terminus, resulting in acis-to-transswitch that is likely to enable protein–protein interactions required for assembly of recombinogenic Cre intasomes. These findings necessitate a reexamination of the mechanisms by which this widely utilized gene-editing tool selects target sites, avoids spurious DNA cleavage activity, and controls DNA recombination efficiency.

     
    more » « less
  2. Abstract

    Intramembrane-cleaving proteases (I-CLiPs) play crucial roles in physiological and pathological processes, such as Alzheimer’s disease and cancer. However, the mechanisms of substrate recognition by I-CLiPs remain poorly understood. The aspartic I-CLiP presenilin is the catalytic subunit of the γ-secretase complex, which releases the amyloid-β peptides (Aβs) through intramembrane proteolysis of the transmembrane domain of the amyloid precursor protein (APPTM). Here we used solution NMR to probe substrate docking of APPTM to the presenilin homologs (PSHs) MCMJR1 and MAMRE50, which cleaved APPTM in the NMR tube. Chemical shift perturbation (CSP) showed juxtamembrane regions of APPTM mediate its docking to MCMJR1. Binding of the substrate to I-CLiP decreased the magnitude of amide proton chemical shifts δHat the C-terminal half of the substrate APPTM, indicating that the docking to the enzyme weakens helical hydrogen bonds and unwinds the substrate transmembrane helix around the initial ε-cleavage site. The APPTM V44M substitution linked to familial AD caused more CSP and helical unwinding around the ε-cleavage site. MAMRE50, which cleaved APPTM at a higher rate, also caused more CSP and helical unwinding in APPTM than MCMJR1. Our data suggest that docking of the substrate transmembrane helix and helical unwinding is coupled in intramembrane proteolysis and FAD mutation modifies enzyme/substrate interaction, providing novel insights into the mechanisms of I-CLiPs and AD drug discovery.

     
    more » « less
  3. Abstract

    While immunoglobulins find ubiquitous use in biotechnology as static binders, recent developments have created proantibodies that enable orthogonal switch‐like behavior to antibody function. Previously, peptides with low binding affinity have been genetically fused to antibodies, to proteolytically control binding function by blocking the antigen‐binding site. However, development of these artificial blockers requires panning for peptide sequences that reversibly affect antigen affinity for each antibody. Instead, a more general strategy to achieve dynamic control over antibody affinity may be feasible using protein M (ProtM) fromMycoplasma genitalium, a newly identified polyspecific immunity evasion protein that is capable of blocking antigen binding for a wide range of antibodies. Using C‐terminus truncation to identify ProtM variants that are still capable of binding to antibodies without the ability to block antigens, we developed a novel and universal biological switch for antibodies. Using a site‐specifically placed thrombin cut site, antibody affinity can be modulated by cleavage of the two distinct antibody‐binding and antigen‐blocking domains of ProtM. Because of the high affinity of ProtM toward a large variety of IgG subtypes, this strategy may be used as a universal approach to create proantibodies that are conditionally activated by disease‐specific proteases such as matrix metalloproteinases.

     
    more » « less
  4. Jan Steven Voeller (Ed.)
    At the core of the CRISPR-Cas9 genome-editing technology, the endonuclease Cas9 introduces site-specific breaks in DNA. Here, multi-microsecond molecular dynamics, free-energy and multiscale simulations are combined with solution NMR and DNA cleavage experiments to resolve the catalytic mechanism of target DNA cleavage. We show that the conformation of an active HNH nuclease is tightly dependent on the catalytic Mg2+, unveiling its cardinal structural role. Solution NMR, DNA cleavage assays and molecular simulations of the Mg2+-bound HNH convey on the formation of the active state and show that the protonation state of catalytic H840 is strongly affected by active site mutations. Finally, ab-initio QM(DFT)/MM simulations and metadynamics establish that DNA cleavage occurs through the identified active state, showing that the catalysis is activated by H840 and aided by K866, in line with DNA cleavage experiments. This information is critical to ameliorating Cas9 function, and helping the development of genome-editing tools. 
    more » « less
  5. Abstract Serial x-ray crystallography can uncover binding events, and subsequent chemical conversions occurring during enzymatic reaction. Here, we reveal the structure, binding and cleavage of moxalactam antibiotic bound to L1 metallo-β-lactamase (MBL) from Stenotrophomonas maltophilia . Using time-resolved serial synchrotron crystallography, we show the time course of β-lactam hydrolysis and determine ten snapshots (20, 40, 60, 80, 100, 150, 300, 500, 2000 and 4000 ms) at 2.20 Å resolution. The reaction is initiated by laser pulse releasing Zn 2+ ions from a UV-labile photocage. Two metal ions bind to the active site, followed by binding of moxalactam and the intact β-lactam ring is observed for 100 ms after photolysis. Cleavage of β-lactam is detected at 150 ms and the ligand is significantly displaced. The reaction product adjusts its conformation reaching steady state at 2000 ms corresponding to the relaxed state of the enzyme. Only small changes are observed in the positions of Zn 2+ ions and the active site residues. Mechanistic details captured here can be generalized to other MBLs. 
    more » « less