skip to main content

Title: Discovery of mosquitocides from fungal extracts through a high-throughput cytotoxicity-screening approach
Abstract Background

Mosquitoes transmit a variety of diseases. Due to widespread insecticide resistance, new effective pesticides are urgently needed. Entomopathogenic fungi are widely utilized to control pest insects in agriculture. We hypothesized that certain fungal metabolites may be effective insecticides against mosquitoes.


A high-throughput cytotoxicity-based screening approach was developed to search for insecticidal compounds in our newly established global fungal extract library. We first determined cell survival rates after adding various fungal extracts. Candidate insecticides were further analyzed using traditional larval and adult survival bioassays.


Twelve ethyl acetate extracts from a total of 192 fungal extracts displayed > 85% inhibition of cabbage looper ovary cell proliferation. Ten of these 12 candidates were confirmed to be toxic toAnopheles gambiaeSua5B cell line, and six showed > 85% inhibition ofAnophelesmosquito cell growth. Further bioassays determined a LC50, the lethal concentration that kills 50% of larval or adult mosquitoes, of 122 µg/mL and 1.7 µg/mosquito, respectively, after 24 h for extract 76F6 fromPenicillium toxicarium.


We established a high-throughput MTT-based cytotoxicity screening approach for the discovery of new mosquitocides from fungal extracts. We discovered a candidate extract fromP. toxicariumthat exhibited high toxicity to mosquito larvae and adults, and thus were able to demonstrate the value of our recently developed approach. The active fungal extracts discovered here are ideal candidates for further development as mosquitocides.

Graphical abstract 
more » « less
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Parasites & Vectors
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Redox reactions play a central role in the metabolism of an organism. It is vital to maintain redox homeostasis in response to the fluctuation of redox shift in various biological contexts. NADPH-dependent reducing capacity is one of the key factors contributing to the redox homeostasis. To understand the redox capacity and its impact on mosquito fecundity and susceptibility to insecticides inAnopheles gambiae, we examined the dynamics of elevated oxidative state via induction by paraquat (PQ) and the inhibition of NADPH regeneration by 6-aminonicotinamide (6AN). In naïve conditions, inherent oxidative capacity varies between individuals, as measured by GSSG/GSH ratio. The high GSSG/GSH ratio was negatively correlated with fecundity. Both PQ and 6AN feeding increased GSSG/GSH ratio and elevated protein carbonylation, a marker of oxidative damage. Both pro-oxidants lowered egg production. Co-feeding the pro-oxidants with antioxidant lycopene attenuated the adverse effects on fecundity, implying that oxidative stress was the cause of this phenotype. Pre-feeding with 6AN increased insecticide susceptibility in DDT resistant mosquitoes. These results indicate that oxidative state is delicate in mosquitoes, manipulation of NADPH pool may adversely affect fecundity and insecticide detoxification capacity. This knowledge can be exploited to develop novel vector control strategies targeting fecundity and insecticide resistance.

    more » « less
  2. Abstract

    Invasive mosquitoes are expanding their ranges into new geographic areas and interacting with resident mosquito species. Understanding how novel interactions can affect mosquito population dynamics is necessary to predict transmission risk at invasion fronts. Mosquito life‐history traits are extremely sensitive to temperature, and this can lead to temperature‐dependent competition between competing invasive mosquito species. We explored temperature‐dependent competition betweenAedes aegyptiandAnopheles stephensi, two invasive mosquito species whose distributions overlap in India, the Middle East, and North Africa, whereAn. stephensiis currently expanding into the endemic range ofAe. aegypti. We followed mosquito cohorts raised at different intraspecific and interspecific densities across five temperatures (16–32°C) to measure traits relevant for population growth and to estimate species’ per capita growth rates. We then used these growth rates to derive each species’ competitive ability at each temperature. We find strong evidence for asymmetric competition at all temperatures, withAe. aegyptiemerging as the dominant competitor. This was primarily because of differences in larval survival and development times across all temperatures that resulted in a higher estimated intrinsic growth rate and competitive tolerance estimate forAe. aegypticompared toAn. stephensi. The spread ofAn. stephensiinto the African continent could lead to urban transmission of malaria, an otherwise rural disease, increasing the human population at risk and complicating malaria elimination efforts. Competition has resulted in habitat segregation of other invasive mosquito species, and our results suggest that it may play a role in determining the distribution ofAn. stephensiacross its invasive range.

    more » « less
  3. Abstract

    Plasmodiuminvasion of mosquito midguts is a mandatory step for malaria transmission. The roles of mosquito midgut proteins and parasite interaction during malaria transmission are not clear. This study aims to identify mosquito midgut proteins that interact with and affectP. falciparuminvasion. Based on gene expression profiles and protein sequences, 76 mosquito secretory proteins that are highly expressed in midguts and up-regulated by blood meals were chosen for analysis. About 61 candidate genes were successfully cloned fromAnopheles gambiaeand expressed in insect cells. ELISA analysis showed that 25 of the insect cell-expressed recombinant mosquito proteins interacted with theP. falciparum-infected cell lysates. Indirect immunofluorescence assays confirmed 17 of them interacted with sexual stage parasites significantly stronger than asexual stage parasites. Knockdown assays found that seven candidate genes significantly changed mosquitoes' susceptibility toP. falciparum. Four of them (AGAP006268, AGAP002848, AGAP006972, and AGAP002851) played a protective function against parasite invasion, and the other three (AGAP008138, FREP1, and HPX15) facilitatedP. falciparumtransmission to mosquitoes. Notably, AGAP008138 is a unique gene that only exists inAnophelinemosquitoes. These gene products are ideal targets to block malaria transmission.

    more » « less
  4. Abstract Background

    Mosquitoes harbor microbial communities that play important roles in their growth, survival, reproduction, and ability to transmit human pathogens. Microbiome transplantation approaches are often used to study host-microbe interactions and identify microbial taxa and assemblages associated with health or disease. However, no such approaches have been developed to manipulate the microbiota of mosquitoes.


    Here, we developed an approach to transfer entire microbial communities between mosquito cohorts. We undertook transfers between (Culex quinquefasciatustoAedes aegypti) and within (Ae. aegyptitoAe. aegypti) species to validate the approach and determine the number of mosquitoes required to prepare donor microbiota. After the transfer, we monitored mosquito development and microbiota dynamics throughout the life cycle. Typical holometabolous lifestyle-related microbiota structures were observed, with higher dynamics of microbial structures in larval stages, including the larval water, and less diversity in adults. Microbiota diversity in recipient adults was also more similar to the microbiota diversity in donor adults.


    This study provides the first evidence for successful microbiome transplantation in mosquitoes. Our results highlight the value of such methods for studying mosquito-microbe interactions and lay the foundation for future studies to elucidate the factors underlying microbiota acquisition, assembly, and function in mosquitoes under controlled conditions.

    more » « less
  5. Pyrethroid contact insecticides are mainstays of malaria control, but their efficacies are declining due to widespread insecticide resistance inAnophelesmosquito populations, a major public health challenge. Several strategies have been proposed to overcome this challenge, including insecticides with new modes of action. New insecticides, however, can be expensive to implement in low-income countries. Here, we report a simple and inexpensive method to improve the efficacy of deltamethrin, the most active and most commonly used pyrethroid, by more than 10 times againstAnophelesmosquitoes. Upon heating for only a few minutes, the commercially available deltamethrin crystals, form I, melt and crystallize upon cooling into a polymorph, form II, which is much faster acting against fruit flies and mosquitoes. Epidemiological modeling suggests that the use of form II in indoor residual spraying in place of form I would significantly suppress malaria transmission, even in the presence of high levels of resistance. The simple preparation of form II, coupled with its kinetic stability and markedly higher efficacy, argues that form II can provide a powerful, timely, and affordable malaria control solution for low-income countries that are losing protection in the face of worldwide pyrethroid resistance.

    more » « less