skip to main content

Title: Uncertainty quantification and reduction in metal additive manufacturing

Uncertainty quantification (UQ) in metal additive manufacturing (AM) has attracted tremendous interest in order to dramatically improve product reliability. Model-based UQ, which relies on the validity of a computational model, has been widely explored as a potential substitute for the time-consuming and expensive UQ solely based on experiments. However, its adoption in the practical AM process requires overcoming two main challenges: (1) the inaccurate knowledge of uncertainty sources and (2) the intrinsic uncertainty associated with the computational model. Here, we propose a data-driven framework to tackle these two challenges by combining high throughput physical/surrogate model simulations and the AM-Bench experimental data from the National Institute of Standards and Technology (NIST). We first construct a surrogate model, based on high throughput physical simulations, for predicting the three-dimensional (3D) melt pool geometry and its uncertainty with respect to AM parameters and uncertainty sources. We then employ a sequential Bayesian calibration method to perform experimental parameter calibration and model correction to significantly improve the validity of the 3D melt pool surrogate model. The application of the calibrated melt pool model to UQ of the porosity level, an important quality factor, of AM parts, demonstrates its potential use in AM quality control. The proposed UQ framework can be generally applicable to different AM processes, representing a significant advance toward physics-based quality control of AM products.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The presence of various uncertainty sources in metal-based additive manufacturing (AM) process prevents producing AM products with consistently high quality. Using electron beam melting (EBM) of Ti-6Al-4V as an example, this paper presents a data-driven framework for process parameters optimization using physics-informed computer simulation models. The goal is to identify a robust manufacturing condition that allows us to constantly obtain equiaxed materials microstructures under uncertainty. To overcome the computational challenge in the robust design optimization under uncertainty, a two-level data-driven surrogate model is constructed based on the simulation data of a validated high-fidelity multiphysics AM simulation model. The robust design result, indicating a combination of low preheating temperature, low beam power, and intermediate scanning speed, was acquired enabling the repetitive production of equiaxed structure products as demonstrated by physics-based simulations. Global sensitivity analysis at the optimal design point indicates that among the studied six noise factors, specific heat capacity and grain growth activation energy have the largest impact on the microstructure variation. Through this exemplar process optimization, the current study also demonstrates the promising potential of the presented approach in facilitating other complicate AM process optimizations, such as robust designs in terms of porosity control or direct mechanical property control. 
    more » « less
  2. Designing alloys for additive manufacturing (AM) presents significant opportunities. Still, the chemical composition and processing conditions required for printability (ie., their suitability for fabrication via AM) are challenging to explore using solely experimental means. In this work, we develop a high-throughput (HTP) computational framework to guide the search for highly printable alloys and appropriate processing parameters. The framework uses material properties from stateof- the-art databases, processing parameters, and simulated melt pool profiles to predict processinduced defects, such as lack-of-fusion, keyholing, and balling. We accelerate the printability assessment using a deep learning surrogate for a thermal model, enabling a 1,000-fold acceleration in assessing the printability of a given alloy at no loss in accuracy when compared with conventional physics-based thermal models. We verify and validate the framework by constructing printability maps for the CoCrFeMnNi Cantor alloy system and comparing our predictions to an exhaustive ’in-house’ database. The framework enables the systematic investigation of the printability of a wide range of alloys in the broader Co-Cr-Fe-Mn-Ni HEA system. We identified the most promising alloys that were suitable for high-temperature applications and had the narrowest solidification ranges, and that was the least susceptible to balling, hot-cracking, and the formation of macroscopic printing defects. A new metric for the global printability of an alloy is constructed and is further used for the ranking of candidate alloys. The proposed framework is expected to be integrated into ICME approaches to accelerate the discovery and optimization of novel high-performance, printable alloys. 
    more » « less
  3. This study presents an overview and a few case studies to explicate the transformative power of diverse imaging techniques for smart manufacturing, focusing largely on variousin-situandex-situimaging methods for monitoring fusion-based metal additive manufacturing (AM) processes such as directed energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM).In-situimaging techniques, encompassing high-speed cameras, thermal cameras, and digital cameras, are becoming increasingly affordable, complementary, and are emerging as vital for real-time monitoring, enabling continuous assessment of build quality. For example, high-speed cameras capture dynamic laser-material interaction, swiftly detecting defects, while thermal cameras identify thermal distribution of the melt pool and potential anomalies. The data gathered fromin-situimaging are then utilized to extract pertinent features that facilitate effective control of process parameters, thereby optimizing the AM processes and minimizing defects. On the other hand,ex-situimaging techniques play a critical role in comprehensive component analysis. Scanning electron microscopy (SEM), optical microscopy, and 3D-profilometry enable detailed characterization of microstructural features, surface roughness, porosity, and dimensional accuracy. Employing a battery of Artificial Intelligence (AI) algorithms, information from diverse imaging and other multi-modal data sources can be fused, and thereby achieve a more comprehensive understanding of a manufacturing process. This integration enables informed decision-making for process optimization and quality assurance, as AI algorithms analyze the combined data to extract relevant insights and patterns. Ultimately, the power of imaging in additive manufacturing lies in its ability to deliver real-time monitoring, precise control, and comprehensive analysis, empowering manufacturers to achieve supreme levels of precision, reliability, and productivity in the production of components.

    more » « less
  4. null (Ed.)
    Abstract A high-precision additive manufacturing (AM) process, powder bed fusion (PBF) has enabled unmatched agile manufacturing of a wide range of products from engine components to medical implants. While finite element modeling and closed-loop control have been identified key for predicting and engineering part qualities in PBF, existing results in each realm are developed in opposite computational architectures wildly different in time scale. This paper builds a first-instance closed-loop simulation framework by integrating high-fidelity finite element modeling with feedback controls originally developed for general mechatronics systems. By utilizing the output signals (e.g., melt pool width) retrieved from the finite element model (FEM) to update directly the control signals (e.g., laser power) sent to the model, the proposed closed-loop framework enables testing the limits of advanced controls in PBF and surveying the parameter space fully to generate more predictable part qualities. Along the course of formulating the framework, we verify the FEM by comparing its results with experimental and analytical solutions and then use the FEM to understand the melt-pool evolution induced by the in- and cross-layer thermomechanical interactions. From there, we build a repetitive control (RC) algorithm to attenuate variations of the melt pool width. 
    more » « less
  5. Delta 3D printers can significantly increase throughput in additive manufacturing by enabling faster and more precise motion compared to conventional serial-axis 3D printers. Further improvements in motion speed and part quality can be realized through model-based feedforward vibration control, as demonstrated on serial-axis 3D printers. However, delta machines have not benefited from model-based controllers because of the difficulty in accurately modeling their position-dependent, coupled nonlinear dynamics. In this paper, we propose an efficient framework to obtain accurate linear parameter-varying models of delta 3D printers at any position within their workspace from a few frequency response measurements. We decompose the dynamics into two sub-models–(1) an experimentally-identified sub-model containing decoupled vibration dynamics; and (2) an analytically-derived sub-model containing coupled dynamics–which are combined into one using receptance coupling. We generalize the framework by extending the analytical model of (2) to account for differing mass profiles and dynamic models of the printer’s end-effector. Experiments demonstrate reasonably accurate predictions of the position-dependent dynamics of a commercial delta printer, augmented with a direct drive extruder, at various positions in its workspace. Note to Practitioners—This work aims to equip high-speed 3D printers, like delta machines, with model-based controllers to complement their speed with high-accuracy. Due to the coupled kinematic chains of the delta, complex control methodologies, some of which require real-time state measurements, are often used to achieve satisfactory control performance. Our modeling approach provides an efficient methodology for obtaining accurate linear models without the need for real-time measurements, thus enabling practitioners to design linear model-based feedforward controllers to achieve the high throughput and accuracy desired in additive manufacturing (AM). The models we develop in this paper are intended for use with feedforward vibration compensation methods, which can be beneficial for both industrial-scale AM machines that have high-powered servo motors and feedback controllers, as well as consumer-grade AM machines which use stepper motors in feedforward control. 
    more » « less