skip to main content

Title: Adaptive Critical Balance and Firehose Instability in an Expanding, Turbulent, Collisionless Plasma

Using a hybrid-kinetic particle-in-cell simulation, we study the evolution of an expanding, collisionless, magnetized plasma in which strong Alfvénic turbulence is persistently driven. Temperature anisotropy generated adiabatically by the plasma expansion (and consequent decrease in the mean magnetic-field strength) gradually reduces the effective elasticity of the field lines, causing reductions in the linear frequency and residual energy of the Alfvénic fluctuations. In response, these fluctuations modify their interactions and spatial anisotropy to maintain a scale-by-scale “critical balance” between their characteristic linear and nonlinear frequencies. Eventually the plasma becomes unstable to kinetic firehose instabilities, which excite rapidly growing magnetic fluctuations at ion-Larmor scales. The consequent pitch-angle scattering of particles maintains the temperature anisotropy near marginal stability, even as the turbulent plasma continues to expand. The resulting evolution of parallel and perpendicular temperatures does not satisfy double-adiabatic conservation laws, but is described accurately by a simple model that includes anomalous scattering. Our results have implications for understanding the complex interplay between macro- and microscale physics in various hot, dilute, astrophysical plasmas, and offer predictions concerning power spectra, residual energy, ion-Larmor-scale spectral breaks, and non-Maxwellian features in ion distribution functions that may be tested by measurements taken in high-beta regions of the more » solar wind.

« less
; ; ; ;
Publication Date:
Journal Name:
The Astrophysical Journal Letters
Page Range or eLocation-ID:
Article No. L35
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a phenomenological and numerical study of strong Alfvénic turbulence in a magnetically dominated collisionless relativistic plasma with a strong background magnetic field. In contrast with the nonrelativistic case, the energy in such turbulence is contained in magnetic and electric fluctuations. We argue that such turbulence is analogous to turbulence in a strongly magnetized nonrelativistic plasma in the regime of broken quasi-neutrality. Our 2D particle-in-cell numerical simulations of turbulence in a relativistic pair plasma find that the spectrum of the total energy has the scalingk−3/2, while the difference between the magnetic and electric energies, the so-called residual energy, has the scalingk−2.4. The electric and magnetic fluctuations at scaleexhibit dynamic alignment with the alignment angle scaling close tocosϕ1/4. At scales smaller than the (relativistic) plasma inertial scale, the energy spectrum of relativistic inertial Alfvén turbulence steepens tok−3.5.

  2. Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identify the circularly polarized plasma waves propagating near the proton gyrofrequency in both intervals. However, the sense of magnetic polarization in the spacecraft frame is observed to be opposite in the two intervals, although they both possess a sunward background magnetic field. The ion-scale plasma wave observed in the first interval can be either an inward-propagating ion cyclotron wave (ICW) or an outward-propagating fast-mode/whistler wave in the plasma frame, while in the second interval it can be explained as an outward ICW or inward fast-mode/whistler wave. The identification of the exact kinetic wave mode is more difficult to confirm owing tomore »the limited plasma data resolution. The presence of ion-scale waves near the Sun suggests that ion cyclotron resonance may be one of the ubiquitous kinetic physical processes associated with small-scale magnetic fluctuations and kinetic instabilities in the inner heliosphere.« less
  3. Abstract

    Revealing the formation, dynamics, and contribution to plasma heating of magnetic field fluctuations in the solar wind is an important task for heliospheric physics and for a general plasma turbulence theory. Spacecraft observations in the solar wind are limited to spatially localized measurements, so that the evolution of fluctuation properties with solar wind propagation is mostly studied via statistical analyses of data sets collected by different spacecraft at various radial distances from the Sun. In this study we investigate the evolution of turbulence in the Earth’s magnetosheath, a plasma system sharing many properties with the solar wind. The near-Earth space environment is being explored by multiple spacecraft missions, which may allow us to trace the evolution of magnetosheath fluctuations with simultaneous measurements at different distances from their origin, the Earth’s bow shock. We compare ARTEMIS and Magnetospheric Multiscale (MMS) Mission measurements in the Earth magnetosheath and Parker Solar Probe measurements of the solar wind at different radial distances. The comparison is supported by three numerical simulations of the magnetosheath magnetic and plasma fluctuations: global hybrid simulation resolving ion kinetic and including effects of Earth’s dipole field and realistic bow shock, hybrid and Hall-MHD simulations in expanding boxes that mimicmore »the magnetosheath volume expansion with the radial distance from the dayside bow shock. The comparison shows that the magnetosheath can be considered as a miniaturized version of the solar wind system with much stronger plasma thermal anisotropy and an almost equal amount of forward and backward propagating Alfvén waves. Thus, many processes, such as turbulence development and kinetic instability contributions to plasma heating, occurring on slow timescales and over large distances in the solar wind, occur more rapidly in the magnetosheath and can be investigated in detail by multiple near-Earth spacecraft.

    « less

    Models for cosmic ray (CR) dynamics fundamentally depend on the rate of CR scattering from magnetic fluctuations. In the ISM, for CRs with energies ∼MeV-TeV, these fluctuations are usually attributed either to ‘extrinsic turbulence’ (ET) – a cascade from larger scales – or ‘self-confinement’ (SC) – self-generated fluctuations from CR streaming. Using simple analytic arguments and detailed ‘live’ numerical CR transport calculations in galaxy simulations, we show that both of these, in standard form, cannot explain even basic qualitative features of observed CR spectra. For ET, any spectrum that obeys critical balance or features realistic anisotropy, or any spectrum that accounts for finite damping below the dissipation scale, predicts qualitatively incorrect spectral shapes and scalings of B/C and other species. Even if somehow one ignored both anisotropy and damping, observationally required scattering rates disagree with ET predictions by orders of magnitude. For SC, the dependence of driving on CR energy density means that it is nearly impossible to recover observed CR spectral shapes and scalings, and again there is an orders-of-magnitude normalization problem. But more severely, SC solutions with super-Alfvénic streaming are unstable. In live simulations, they revert to either arbitrarily rapid CR escape with zero secondary production, ormore »to bottleneck solutions with far-too-strong CR confinement and secondary production. Resolving these fundamental issues without discarding basic plasma processes requires invoking different drivers for scattering fluctuations. These must act on a broad range of scales with a power spectrum obeying several specific (but plausible) constraints.

    « less
  5. We study the time-dependent formation and evolution of a current sheet (CS) in a magnetised, collisionless, high-beta plasma using hybrid-kinetic particle-in-cell simulations. An initially tearing-stable Harris sheet is frozen into a persistently driven incompressible flow so that its characteristic thickness gradually decreases in time. As the CS thins, the strength of the reconnecting field increases, and adiabatic invariance in the inflowing fluid elements produces a field-biased pressure anisotropy with excess perpendicular pressure. At large plasma beta, this anisotropy excites the mirror instability, which deforms the reconnecting field on ion-Larmor scales and dramatically reduces the effective thickness of the CS. Tearing modes whose wavelengths are comparable to that of the mirrors then become unstable, triggering reconnection on smaller scales and at earlier times than would have occurred if the thinning CS were to have retained its Harris profile. A novel method for identifying and tracking X-points is introduced, yielding X-point separations that are initially intermediate between the perpendicular and parallel mirror wavelengths in the upstream plasma. These mirror-stimulated tearing modes ultimately grow and merge to produce island widths comparable to the CS thickness, an outcome we verify across a range of CS formation timescales and initial CS widths. Our results maymore »find their most immediate application in the tearing disruption of magnetic folds generated by turbulent dynamo in weakly collisional, high-beta, astrophysical plasmas.« less