skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Risky Development: Increasing Exposure to Natural Hazards in the United States
Abstract Losses from natural hazards are escalating dramatically, with more properties and critical infrastructure affected each year. Although the magnitude, intensity, and/or frequency of certain hazards has increased, development contributes to this unsustainable trend, as disasters emerge when natural disturbances meet vulnerable assets and populations. To diagnose development patterns leading to increased exposure in the conterminous United States (CONUS), we identified earthquake, flood, hurricane, tornado, and wildfire hazard hotspots, and overlaid them with land use information from the Historical Settlement Data Compilation data set. Our results show that 57% of structures (homes, schools, hospitals, office buildings, etc.) are located in hazard hotspots, which represent only a third of CONUS area, and ∼1.5 million buildings lie in hotspots for two or more hazards. These critical levels of exposure are the legacy of decades of sustained growth and point to our inability, lack of knowledge, or unwillingness to limit development in hazardous zones. Development in these areas is still growing more rapidly than the baseline rates for the nation, portending larger future losses even if the effects of climate change are not considered.  more » « less
Award ID(s):
1924670
PAR ID:
10360660
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
9
Issue:
7
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Severe natural multi-hazard events can cause damage to infrastructure and economic losses of billions of dollars. The challenges of modeling these losses include dependency between hazards, cause and sequence of loss, and lack of available data. This paper presents and explores multi-hazard loss modeling in the context of the combined wind and rain vulnerability of mid/high-rise buildings during hurricane events. A component-based probabilistic vulnerability model provides the framework to test and contrast two different approaches to treat the multi-hazards: In one, the wind and rain hazard models are both decoupled from the vulnerability model. In the other, only the wind hazard is decoupled, while the rain hazard model is embedded into the vulnerability model. The paper presents the mathematical and conceptual development of each approach, example outputs from each for the same scenario, and a discussion of weaknesses and strengths of each approach. 
    more » « less
  2. Abstract. Megacities are predominantlyconcentrated along coastlines, making them exposed to a diverse mix ofnatural hazards. The assessment of climatic hazard risk to cities rarely hascaptured the multiple interactions that occur in complex urban systems. Wepresent an improved method for urban multi-hazard risk assessment. We thenanalyze the risk of New York City as a case study to apply enhanced methodsfor multi-hazard risk assessment given the history of exposure to multipletypes of natural hazards which overlap spatially and, in some cases,temporally in this coastal megacity. Our aim is to identify hotspots ofmulti-hazard risk to support the prioritization of adaptation strategies thatcan address multiple sources of risk to urban residents. We usedsocioeconomic indicators to assess vulnerabilities and risks to threeclimate-related hazards (i.e., heat waves, inland flooding and coastal flooding) at high spatial resolution.The analysis incorporates local experts' opinions to identify sources ofmulti-hazard risk and to weight indicators used in the multi-hazard riskassessment. Results demonstrate the application of multi-hazard riskassessment to a coastal megacity and show that spatial hotspots ofmulti-hazard risk affect similar local residential communities along thecoastlines. Analyses suggest that New York City should prioritize adaptationin coastal zones and consider possible synergies and/or trade-offs tomaximize impacts of adaptation and resilience interventions in the spatiallyoverlapping areas at risk of impacts from multiple hazards. 
    more » « less
  3. Abstract Increased wildfire activity has raised concerns among communities about how to assess and prepare for this threat. There is a need for wildfire hazard assessment approaches that capture local variability to inform decisions, produce results understood by the public, and are updatable in a timely manner. We modified an existing approach to assess decadal wildfire hazards based primarily on ember dispersal and wildfire proximity, referencing landscape changes from 1984 through 2014. Our modifications created a categorical flammability hazard scheme, rather than dichotomous, and integrated wildfire exposure results across spatial scales. We used remote sensed land cover from four historical decadal points to create flammability hazard and wildfire exposure maps for three arctic communities (Anchorage and Fairbanks, Alaska and Whitehorse, Yukon). Within the Fairbanks study area, we compared 2014 flammability hazard, wildfire exposure, and FlamMap burn probabilities among burned (2014–2023) and unburned areas. Unlike burn probabilities, there were significantly higher in exposure values among burned and unburned locations (Wilcoxon;p < 0.001) and exposure rose as flammability hazard classes increased (Kruskal–Wallis;p < 0.001). Very high flammability hazard class supported 75% of burned areas and burns tended to occur in areas with 60% exposure or greater. Areas with high exposure values are more prone to burn and thus desirable for mitigation actions. By working with wildfire practitioners and communities, we created a tool that rapidly assesses wildfire hazards and is easily modified to help identify and prioritize mitigation activities. 
    more » « less
  4. Abstract This paper presents a new coupled urban change and hazard consequence model that considers population growth, a changing built environment, natural hazard mitigation planning, and future acute hazards. Urban change is simulated as an agent‐based land market with six agent types and six land use types. Agents compete for parcels with successful bids leading to changes in both urban land use—affecting where agents are located—and structural properties of buildings—affecting the building's ability to resist damage to natural hazards. IN‐CORE, an open‐source community resilience model, is used to compute damages to the built environment. The coupled model operates under constraints imposed by planning policies defined at the start of a simulation. The model is applied to Seaside, Oregon, a coastal community in the North American Pacific Northwest subject to seismic‐tsunami hazards emanating from the Cascadia Subduction Zone. Ten planning scenarios are considered including caps on the number of vacation homes, relocating community assets, limiting new development, and mandatory seismic retrofits. By applying this coupled model to the testbed community, we show that: (a) placing a cap on the number of vacation homes results in more visitors in damaged buildings, (b) that mandatory seismic retrofits do not reduce the number of people in damaged buildings when considering population growth, (c) polices diverge beyond year 10 in the model, indicating that many policies take time to realize their implications, and (d) the most effective policies were those that incorporated elements of both urban planning and enforced building codes. 
    more » « less
  5. Natural hazards such as hurricanes, floods, and wildfires cause devastating socio-economic impacts on communities. In South Florida, most of these hazards are becoming increasingly frequent and severe because of the warming climate, and changes in vulnerability and exposure, resulting in significant damage to infrastructure, homes, and businesses. To better understand the drivers of these impacts, we developed a bottom-up impact-based methodology that takes into account all relevant drivers for different types of hazards. We identify the specific drivers that co-occurred with socio-economic impacts and determine whether these extreme events were caused by single or multiple hydrometeorological drivers (i.e., compound events). We consider six types of natural hazards: hurricanes, severe storm/thunderstorms, floods, heatwaves, wildfire, and winter weather. Using historical, socio-economic loss data along with observations and reanalysis data for hydrometeorological drivers, we analyze how often these drivers contributed to the impacts of natural hazards in South Florida. We find that for each type of hazard, the relative importance of the drivers varies depending on the severity of the event. For example, wind speed is a key driver of the socio-economic impacts of hurricanes, while precipitation is a key driver of the impacts of flooding. We find that most of the high-impact events in South Florida were compound events, where multiple drivers contributed to the occurrences and impacts of the events. For example, more than 50% of the recorded flooding events were compound events and these contributed to 99% of total property damages and 98% of total crop damages associated with flooding in Miami-Dade County. Our results provide valuable insights into the drivers of natural hazard impacts in South Florida and can inform the development of more effective risk reduction strategies for improving the preparedness and resilience of the region against extreme events. Our bottom-up impact-based methodology can be applied to other regions and hazard types, allowing for more comprehensive and accurate assessments of the impacts of compound hazards. 
    more » « less