skip to main content


Title: Process hybridization schemes for multiscale engineered tissue biofabrication
Abstract

Recapitulation of multiscale structure–function properties of cells, cell‐secreted extracellular matrix, and 3D architecture of natural tissues is central to engineering biomimetic tissue substitutes. Toward achieving biomimicry, a variety of biofabrication processes have been developed, which can be broadly classified into five categories—fiber and fabric formation, additive manufacturing, surface modification, remote fields, and other notable processes—each with specific advantages and limitations. The majority of biofabrication literature has focused on using a single process at a time, which often limits the range of tissues that could be created with relevant features that span nano to macro scales. With multiscale biomimicry as the goal, development of hybrid biofabrication strategies that synergistically unite two or more processes to complement each other's strengths and limitations has been steadily increasing. This work discusses recent literature in this domain and attempts to equip the reader with the understanding of selecting appropriate processes that can harmonize toward creating engineered tissues with appropriate multiscale structure–function properties. Opportunities related to various hybridization schemes and a future outlook on scale‐up biofabrication have also been discussed.

This article is categorized under:

Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement

 
more » « less
Award ID(s):
1652489 1703466
NSF-PAR ID:
10360668
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Nanomedicine and Nanobiotechnology
Volume:
13
Issue:
2
ISSN:
1939-5116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The “omics” revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross‐talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems‐level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis.

    This article is categorized under:

    Physiology > Mammalian Physiology in Health and Disease

    Developmental Biology > Developmental Processes in Health and Disease

    Models of Systems Properties and Processes > Cellular Models

     
    more » « less
  2. Abstract

    The ability to adequately pump blood throughout the body is the result of tightly regulated feedback mechanisms that exist across many spatial scales in the heart. Diseases which impede the function at any one of the spatial scales can cause detrimental cardiac remodeling and eventual heart failure. An overarching goal of cardiac research is to use engineered heart tissue in vitro to study the physiology of diseased heart tissue, develop cell replacement therapies, and explore drug testing applications. A commonality within the field is to manipulate the flow of mechanical signals across the various spatial scales to direct self‐organization and build functional tissue. Doing so requires an understanding of how chemical, electrical, and mechanical cues can be used to alter the cellular microenvironment. We discuss how mathematical models have been used in conjunction with experimental techniques to explore various structure–function relations that exist across numerous spatial scales. We highlight how a systems biology approach can be employed to recapitulate in vivo characteristics in vitro at the tissue, cell, and subcellular scales. Specific focus is placed on the interplay between experimental and theoretical approaches. Various modeling methods are showcased to demonstrate the breadth and power afforded to the systems biology approach. An overview of modeling methodologies exemplifies how the strengths of different scientific disciplines can be used to supplement and/or inspire new avenues of experimental exploration.

    This article is categorized under:

    Models of Systems Properties and Processes > Mechanistic Models

    Models of Systems Properties and Processes > Cellular Models

    Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models

     
    more » « less
  3. Abstract

    Skeletal muscle's isometric contractile properties are one of the classic structure–function relationships in all of biology allowing for extrapolation of single fibre mechanical properties to whole muscle properties based on the muscle's optimal fibre length and physiological cross‐sectional area (PCSA). However, this relationship has only been validated in small animals and then extrapolated to human muscles, which are much larger in terms of length and PCSA. The present study aimed to measure directly thein situproperties and function of the human gracilis muscle to validate this relationship. We leveraged a unique surgical technique in which a human gracilis muscle is transferred from the thigh to the arm, restoring elbow flexion after brachial plexus injury. During this surgery, we directly measured subject specific gracilis muscle force–length relationshipin situand propertiesex vivo. Each subject's optimal fibre length was calculated from their muscle's length‐tension properties. Each subject's PCSA was calculated from their muscle volume and optimal fibre length. From these experimental data, we established a human muscle fibre‐specific tension of 171 kPa. We also determined that average gracilis optimal fibre length is 12.9 cm. Using this subject‐specific fibre length, we observed an excellent fit between experimental and theorical active length‐tension curves. However, these fibre lengths were about half of the previously reported optimal fascicle lengths of 23 cm. Thus, the long gracilis muscle appears to be composed of relatively short fibres acting in parallel that may not have been appreciated based on traditional anatomical methods.image

    Key points

    Skeletal muscle's isometric contractile properties represent one of the classic structure–function relationships in all of biology and allow scaling single fibre mechanical properties to whole muscle properties based on the muscle's architecture.

    This physiological relationship has only been validated in small animals but is often extrapolated to human muscles, which are orders of magnitude larger.

    We leverage a unique surgical technique in which a human gracilis muscle is transplanted from the thigh to the arm to restore elbow flexion after brachial plexus injury, aiming to directly measure muscles propertiesin situand test directly the architectural scaling predictions.

    Using these direct measurements, we establish human muscle fibre‐specific tension of ∼170 kPa.

    Furthermore, we show that the gracilis muscle actually functions as a muscle with relatively short fibres acting in parallelvs. long fibres as previously assumed based on traditional anatomical models.

     
    more » « less
  4. Abstract

    Watson–Crick base pairing rules provide a powerful approach for engineering DNA‐based nanodevices with programmable and predictable behaviors. In particular, DNA strand displacement reactions have enabled the development of an impressive repertoire of molecular devices with complex functionalities. By relying on DNA to function, dynamic strand displacement devices represent powerful tools for the interrogation and manipulation of biological systems. Yet, implementation in living systems has been a slow process due to several persistent challenges, including nuclease degradation. To circumvent these issues, researchers are increasingly turning to chemically modified nucleotides as a means to increase device performance and reliability within harsh biological environments. In this review, we summarize recent progress toward the integration of chemically modified nucleotides with DNA strand displacement reactions, highlighting key successes in the development of robust systems and devices that operate in living cells and in vivo. We discuss the advantages and disadvantages of commonly employed modifications as they pertain to DNA strand displacement, as well as considerations that must be taken into account when applying modified oligonucleotide to living cells. Finally, we explore how chemically modified nucleotides fit into the broader goal of bringing dynamic DNA nanotechnology into the cell, and the challenges that remain.

    This article is categorized under:

    Diagnostic Tools > In Vivo Nanodiagnostics and Imaging

    Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

    Diagnostic Tools > Biosensing

     
    more » « less
  5. Abstract

    X‐ray imaging is the most widely used diagnostic imaging method in modern medicine and several advanced forms of this technology have recently emerged. Iodinated molecules and barium sulfate suspensions are clinically approved X‐ray contrast agents and are widely used. However, these existing contrast agents provide limited information, are suboptimal for new X‐ray imaging techniques and are developing safety concerns. Thus, over the past 15 years, there has been a rapid growth in the development of nanoparticles as X‐ray contrast agents. Nanoparticles have several desirable features such as high contrast payloads, the potential for long circulation times, and tunable physicochemical properties. Nanoparticles have also been used in a range of biomedical applications such as disease treatment, targeted imaging, and cell tracking. In this review, we discuss the principles behind X‐ray contrast generation and introduce new types of X‐ray imaging modalities, as well as potential elements and chemical compositions that are suitable for novel contrast agent development. We focus on the progress in nanoparticle X‐ray contrast agents developed to be renally clearable, long circulating, theranostic, targeted, or for cell tracking. We feature agents that are used in conjunction with the newly developed multi‐energy computed tomography and mammographic imaging technologies. Finally, we offer perspectives on current limitations and emerging research topics as well as expectations for the future development of the field.

    This article is categorized under:

    Diagnostic Tools > in vivo Nanodiagnostics and Imaging

    Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

     
    more » « less