Abstract Quantitative evaluations to optimize complexity have become standard for avoiding overfitting of ecological niche models (ENMs) that estimate species’ potential geographic distributions.ENMevalwas the first R package to make such evaluations (often termed model tuning) widely accessible for the Maxent algorithm. It also provided multiple methods for partitioning occurrence data and reported various performance metrics.Requests by users, recent developments in the field, and needs for software compatibility led to a major redesign and expansion. We additionally conducted a literature review to investigate trends inENMevaluse (2015–2019).ENMeval2.0 has a new object‐oriented structure for adding other algorithms, enables customizing algorithmic settings and performance metrics, generates extensive metadata, implements a null‐model approach to quantify significance and effect sizes, and includes features to increase the breadth of analyses and visualizations. In our literature review, we found insufficient reporting of model performance and parameterization, heavy reliance on model selection with AICc and low utilization of spatial cross‐validation; we explain howENMeval2.0 can help address these issues.This redesigned and expanded version can promote progress in the field and improve the information available for decision‐making.
more »
« less
geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience
Abstract Geometric morphometric (GM) tools are essential for meaningfully quantifying and understanding patterns of variation in complex traits like shape. In this field, the breadth of answerable questions has grown dramatically in recent years through the development of new analyses and increased computational efficiency.In this note, we describe the ways in whichgeomorph, a widely usedRpackage for quantifying and analysing GM data, has grown with the field.We presentgeomorph v4.0and describe the ways in which this version has dramatically improved upon previous versions. We also present a new graphical user interface for easy implementation,gmShiny.These contributions positiongeomorphto be the primary tool for GM analyses, particularly those employing a phylogenetic comparative approach.
more »
« less
- PAR ID:
- 10360706
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Methods in Ecology and Evolution
- Volume:
- 12
- Issue:
- 12
- ISSN:
- 2041-210X
- Page Range / eLocation ID:
- p. 2355-2363
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Shape characterizers are metrics that quantify aspects of the overall geometry of a three‐dimensional (3D) digital surface. When computed for biological objects, the values of a shape characterizer are largely independent of homology interpretations and often contain a strong ecological and functional signal. Thus, shape characterizers are useful for understanding evolutionary processes. Dirichlet normal energy (DNE) is a widely used shape characterizer in morphological studies.Recent studies found that DNE is sensitive to various procedures for preparing 3D mesh from raw scan data, raising concerns regarding comparability and objectivity when utilizing DNE in morphological research. We providearobustlyimplementedalgorithm for computing the Dirichlet energy of the normal (ariaDNE) on 3D meshes.We show through simulation that the effects of preparation‐related mesh surface attributes, such as triangle count, mesh representation, noise, smoothing and boundary triangles, are much more limited on ariaDNE than DNE. Furthermore, ariaDNE retains the potential of DNE for biological studies, illustrated by its effectiveness in differentiating species by dietary preferences.Use of ariaDNE can dramatically enhance the assessment of the ecological aspects of morphological variation by its stability under different 3D model acquisition methods and preparation procedure. Towards this goal, we provide scripts for computing ariaDNE and ariaDNE values for specimens used in previously published DNE analyses.more » « less
-
Abstract Population dynamics play a central role in the historical and current development of fundamental and applied ecological science. The nascent culture of open data promises to increase the value of population dynamics studies to the field of ecology. However, synthesis of population data is constrained by the difficulty in identifying relevant datasets, by the heterogeneity of available data and by access to raw (as opposed to aggregated or derived) observations.To obviate these issues, we built a relational database,popler, and itsRclient, the library popler.popleraccommodates the vast majority of population data under a common structure, and without the need for aggregating raw observations. The popler R library is designed for users unfamiliar with the structure of the database and with the SQL language. ThisRlibrary allows users to identify, download, explore and cite datasets salient to their needs.We implemented popler as a PostgreSQL instance, where we stored population data originated by the United States Long Term Ecological Research (LTER) Network. Our focus on the US LTER data aims to leverage the potential of this vast open data resource. The database currently contains 305 datasets from 25 LTER sites.popleris designed to accommodate automatic updates of existing datasets, and to accommodate additional datasets from LTER as well as non‐LTER studies.The combination of the online database and theRlibrary popler is a resource for data synthesis efforts in population ecology. The common structure ofpoplersimplifies comparative analyses, and the availability of raw data confers flexibility in data analysis. The popler R library maximizes these opportunities by providing a user‐friendly interface to the online database.more » « less
-
Abstract Collective motion, that is the coordinated spatial and temporal organisation of individuals, is a core element in the study of collective animal behaviour. The self‐organised properties of how a group moves influence its various behavioural and ecological processes, such as predator–prey dynamics, social foraging and migration. However, little is known about the inter‐ and intra‐specific variation in collective motion. Despite the significant advancement in high‐resolution tracking of multiple individuals within groups, providing collective motion data for animals in the laboratory and the field, a framework to perform quantitative comparisons across species and contexts is lacking.Here, we present theswaRmversepackage. Building on two existing R packages,trackdfandswaRm,swaRmverseenables the identification and analysis of collective motion ‘events’, as presented in Papadopoulou et al. (2023), creating a unit of comparison across datasets. We describe the package's structure and showcase its functionality using existing datasets from several species and simulated trajectories from an agent‐based model.From positional time‐series data for multiple individuals (x‐y‐t‐id),swaRmverseidentifies events of collective motion based on the distribution of polarisation and group speed. For each event, a suite of validated biologically meaningful metrics are calculated, and events are placed into a ‘swarm space’ through dimensional reduction techniques.Our package provides the first automated pipeline enabling the analysis of data on collective behaviour. The package allows the calculation and use of complex metrics for users without a strong quantitative background and will promote communication and data‐sharing across disciplines, standardising the quantification of collective motion across species and promoting comparative investigations.more » « less
-
Abstract Reliable predictions of ectotherm responses to climatic warming are important because many of these organisms perform important roles that can directly impact human society.Thermal performance curves (TPCs) provide useful information on the physiological constraints that limit the capacity of these temperature‐sensitive organisms to exist and grow.NLS pipelines for fitting TPCs are widely available, but these approaches rely on assumptions that can yield unreliable parameter estimates.We presentbayesTPC, anRpackage for fitting TPCs to trait responses using thenimblelanguage and machinery as the underlying engine for Markov Chain Monte Carlo.bayesTPCaims to support the adoption of Bayesian approaches in thermal physiology, and promote TPC fitting that adequately quantifies uncertainty.more » « less
An official website of the United States government
