skip to main content


Title: Health impacts of a randomized biomass cookstove intervention in northern Ghana
Abstract Background

Household air pollution (HAP) from cooking with solid fuels has adverse health effects. REACCTING (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana) was a randomized cookstove intervention study that aimed to determine the effects of two types of “improved” biomass cookstoves on health using self-reported health symptoms and biomarkers of systemic inflammation from dried blood spots for female adult cooks and children, and anthropometric growth measures for children only.

Methods

Two hundred rural households were randomized into four different cookstove groups. Surveys and health measurements were conducted at four time points over a two-year period. Chi-square tests were conducted to determine differences in self-reported health outcomes. Linear mixed models were used to assess the effect of the stoves on inflammation biomarkers in adults and children, and to assess the z-score deviance for the anthropometric data for children.

Results

We find some evidence that two biomarkers of oxidative stress and inflammation, serum amyloid A and C-reactive protein, decreased among adult primary cooks in the intervention groups relative to the control group. We do not find detectable impacts for any of the anthropometry variables or self-reported health.

Conclusions

Overall, we conclude that the REACCTING intervention did not substantially improve the health outcomes examined here, likely due to continued use of traditional stoves, lack of evidence of particulate matter emissions reductions from “improved” stoves, and mixed results for HAP exposure reductions.

Clinical trial registry

ClinicalTrials.gov(National Institutes of Health); Trial Registration Number:NCT04633135; Date of Registration: 11 November 2020 – Retrospectively registered.

URL:https://clinicaltrials.gov/ct2/show/NCT04633135?term=NCT04633135&draw=2&rank=1

 
more » « less
NSF-PAR ID:
10360750
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Public Health
Volume:
21
Issue:
1
ISSN:
1471-2458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives

    School-based mindfulness interventions in children have shown benefits to child well-being. Here, we investigated the effectiveness of a remote, app-based mindfulness intervention for promoting well-being in children.

    Method

    We conducted a randomized controlled trial (RCT) with two control groups to examine the effects of an 8-week mindfulness intervention in U.S. children ages 8–10. We compared pre-post effects between a mindfulness intervention using theInner Explorerapp, and two audiobook control interventions. The 279 children who participated in the interventions were assessed on self-report measures of anxiety and depression symptoms, perceived stress and trait mindfulness and we also collected parental reports.

    Results

    Over 80% of children completed the intervention in each condition. There was evidence for reduced self-perceived stress in children and reduced negative affect in children by parental reports using the mindfulness app, but no significant reduction for anxiety or depression symptoms. In general, between-group effect sizes were small (d < 0.45). Regular use, defined as at least 30 days of mindfulness practice within the study period, was associated with reduced child negative affect by parental reports, as well as reduced parental stress and child self-perceived stress.

    Conclusions

    These findings suggest that home use of a mindfulness app in young children can have a positive impact on children’s emotional well-being if the app is used regularly, specifically for at least 30 days in the 8-week study period. Strategies aimed at promoting regular use of the mindfulness app at home could lead to even better outcomes for children.

    Preregistration

    Preregistered on OSF athttps://osf.io/23vax

     
    more » « less
  2. Background Participation in ambulatory cardiac rehabilitation remains low, especially among older adults. Although mobile health cardiac rehabilitation (mHealth-CR) provides a novel opportunity to deliver care, age-specific impairments may limit older adults’ uptake, and efficacy data are currently lacking. Objective This study aims to describe the design of the rehabilitation using mobile health for older adults with ischemic heart disease in the home setting (RESILIENT) trial. Methods RESILIENT is a multicenter randomized clinical trial that is enrolling patients aged ≥65 years with ischemic heart disease in a 3:1 ratio to either an intervention (mHealth-CR) or control (usual care) arm, with a target sample size of 400 participants. mHealth-CR consists of a commercially available mobile health software platform coupled with weekly exercise therapist sessions to review progress and set new activity goals. The primary outcome is a change in functional mobility (6-minute walk distance), which is measured at baseline and 3 months. Secondary outcomes are health status, goal attainment, hospital readmission, and mortality. Among intervention participants, engagement with the mHealth-CR platform will be analyzed to understand the characteristics that determine different patterns of use (eg, persistent high engagement and declining engagement). Results As of December 2021, the RESILIENT trial had enrolled 116 participants. Enrollment is projected to continue until October 2023. The trial results are expected to be reported in 2024. Conclusions The RESILIENT trial will generate important evidence about the efficacy of mHealth-CR among older adults in multiple domains and characteristics that determine the sustained use of mHealth-CR. These findings will help design future precision medicine approaches to mobile health implementation in older adults. This knowledge is especially important in light of the COVID-19 pandemic that has shifted much of health care to a remote, internet-based setting. Trial Registration ClinicalTrials.gov NCT03978130; https://clinicaltrials.gov/ct2/show/NCT03978130 International Registered Report Identifier (IRRID) DERR1-10.2196/32163 
    more » « less
  3. Abstract Background

    Sustainable Development Goal (SDG) 7 calls for “universal access to affordable, reliable, modern energy services” for the 2.6 billion individuals lacking access to clean cooking fuels and stoves. Low- and middle-income countries are designing policies towards clean fuels, but often prioritize World Health Organization defined ‘clean’ fuels and stoves to urban areas. As clean solutions are explored, it remains unclear what rural households prefer as their clean alternative.

    Methods

    This study conducted household energy surveys with main cooks across four villages in Shirati, Tanzania to understand rural household preferences within the viable clean fuels. Data analysis includes descriptive statistics and a generalized linear model with the Poisson family and log link to estimate prevalence ratios, all of which were conducted in Microsoft Excel and STATA 16.1.

    Results

    The results revealed that while 83% of households (n = 187) stacked a combination of firewood, charcoal, liquified petroleum gas (LPG), and/or kerosene, 82% [95% Confidence Interval: 74%, 89%] of households stated a preference to use LPG. We found that aggregate expenditure on LPG was less than daily purchases of charcoal and firewood. Our analysis found that all villages had a higher prevalence of stacking firewood, charcoal, and LPG, than areas further from the main trading center. Both areas with trading posts had a lower prevalence of using only firewood.

    Conclusions

    Household preference should be systematically incorporated into clean cooking policy decisions. Our results imply that LPG should not be pursued only in urban contexts. We discuss how preference affect adoption and the need to include user preferences to meet universal clean cooking access (SDG 7).

     
    more » « less
  4. Abstract Background

    Sequencing partial 16S rRNA genes is a cost effective method for quantifying the microbial composition of an environment, such as the human gut. However, downstream analysis relies on binning reads into microbial groups by either considering each unique sequence as a different microbe, querying a database to get taxonomic labels from sequences, or clustering similar sequences together. However, these approaches do not fully capture evolutionary relationships between microbes, limiting the ability to identify differentially abundant groups of microbes between a diseased and control cohort. We present sequence-based biomarkers (SBBs), an aggregation method that groups and aggregates microbes using single variants and combinations of variants within their 16S sequences. We compare SBBs against other existing aggregation methods (OTU clustering andMicrophenoorDiTaxafeatures) in several benchmarking tasks: biomarker discovery via permutation test, biomarker discovery via linear discriminant analysis, and phenotype prediction power. We demonstrate the SBBs perform on-par or better than the state-of-the-art methods in biomarker discovery and phenotype prediction.

    Results

    On two independent datasets, SBBs identify differentially abundant groups of microbes with similar or higher statistical significance than existing methods in both a permutation-test-based analysis and using linear discriminant analysis effect size. . By grouping microbes by SBB, we can identify several differentially abundant microbial groups (FDR <.1) between children with autism and neurotypical controls in a set of 115 discordant siblings.Porphyromonadaceae,Ruminococcaceae, and an unnamed species ofBlastocystiswere significantly enriched in autism, whileVeillonellaceaewas significantly depleted. Likewise, aggregating microbes by SBB on a dataset of obese and lean twins, we find several significantly differentially abundant microbial groups (FDR<.1). We observedMegasphaeraandSutterellaceaehighly enriched in obesity, andPhocaeicolasignificantly depleted. SBBs also perform on bar with or better than existing aggregation methods as features in a phenotype prediction model, predicting the autism phenotype with an ROC-AUC score of .64 and the obesity phenotype with an ROC-AUC score of .84.

    Conclusions

    SBBs provide a powerful method for aggregating microbes to perform differential abundance analysis as well as phenotype prediction. Our source code can be freely downloaded fromhttp://github.com/briannachrisman/16s_biomarkers.

     
    more » « less
  5. Background:

    Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022.

    Methods:

    We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance.

    Results:

    Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models.

    Conclusions:

    Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.

    Funding:

    AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).

     
    more » « less