skip to main content


Title: Separating the impacts of heat stress events from rising mean temperatures on winter wheat yield of China
Abstract

Warming due to climate change has profound impacts on regional crop yields, and this includes impacts from rising mean growing season temperature and heat stress events. Adapting to these two impacts could be substantially different, and the overall contribution of these two factors on the effects of climate warming and crop yield is not known. This study used the improved WheatGrow model, which can reproduce the effects of temperature change and heat stress, along with detailed information from 19 location-specific cultivars and local agronomic management practices at 129 research stations across the main wheat-producing region of China, to quantify the regional impacts of temperature increase and heat stress separately on wheat in China. Historical climate, plus two future low-warming scenarios (1.5 °C/2.0 °C warming above pre-industrial) and one future high-warming scenario (RCP8.5), were applied using the crop model, without considering elevated CO2effects. The results showed that heat stress and its yield impact were more severe in the cooler northern sub-regions than the warmer southern sub-regions with historical and future warming scenarios. Heat stress was estimated to reduce wheat yield in most of northern sub-regions by 2.0%–4.0% (up to 29% in extreme years) under the historical climate. Climate warming is projected to increase heat stress events in frequency and extent, especially in northern sub-regions. Surprisingly, higher warming did not result in more yield-impacting heat stress compared to low-warming, due to advanced phenology with mean warming and finally avoiding heat stress events during grain filling in summer. Most negative impacts of climate warming are attributed to increasing mean growing-season temperature, while changes in heat stress are projected to reduce wheat yields by an additional 1.0%–1.5% in northern sub-regions. Adapting to climate change in China must consider the different regional and temperature impacts to be effective.

 
more » « less
NSF-PAR ID:
10360768
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
12
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 124035
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

    Significance Statement

    Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

     
    more » « less
  2. Abstract

    Food demands are rising due to an increasing population with changing food preferences, placing pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of the agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how irrigation impacts the large-scale response of crops to varying climate conditions and how we can explicitly account for uncertainty in yield response to climate. To address these, we developed a statistical model to quantitatively estimate historical and future impacts of climate change and irrigation on US county-level crop yields with uncertainty explicitly treated. Historical climate and crop yield data for 1970–2009 were used over different growing regions to fit the model, and five CMIP5 climate projections were applied to simulate future crop yield response to climate. Maize and spring wheat yields are projected to experience decreasing trends with all models in agreement. Winter wheat yields in the Northwest will see an increasing trend. Results for soybean and winter wheat in the South are more complicated, as irrigation can change the trend in projected yields. The comparison between projected crop yield time series for rainfed and irrigated cases indicates that irrigation can buffer against climate variability that could lead to negative yield anomalies. Through trend analysis of the predictors, the trend in crop yield is mainly driven by projected trends in temperature-related indices, and county-level trend analysis shows regional differences are negligible. This framework provides estimates of the impact of climate and irrigation on US crop yields for the 21st century that account for the full uncertainty of climate variables and the range of crop response. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.

     
    more » « less
  3. Abstract

    Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (−4.6 ± 1.0%/°C) than by WS (−1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2might be overestimated in crop models, because elevated CO2brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.

     
    more » « less
  4. Abstract

    A land process model, Integrated Science Assessment Model, is extended to simulate contemporary soybean and maize crop yields accurately and changes in yields over the period 1901–2100 driven by environmental factors (atmospheric CO2level ([CO2]) and climate), and management factors (nitrogen input and irrigation). Over the twentieth century, each factor contributes to global yield increase; increasing nitrogen fertilization rates is the strongest driver for maize, and increasing [CO2] is the strongest for soybean. Over the 21st century, crop yields are projected under two future scenarios, RCP4.5‐SSP2 and RCP8.5‐SSP5; the warmer temperature drives yields lower, while rising [CO2] drives yields higher. The adverse warmer temperature effect of maize and soybean is offset by other drivers, particularly the increase in [CO2], and resultant changes in the phenological events due to climate change, particularly planting dates and harvesting times, by 2090s under both scenarios. Global yield for maize increases under RCP4.5‐SSP2, which experiences continued growth in [CO2] and higher nitrogen input rates. For soybean, yield increases at a similar rate. However, in RCP8.5‐SSP5, maize yield declines because of greater climate warming, extreme heat stress conditions, and weaker nitrogen fertilization than RCP4.5‐SSP2, particularly in tropical and subtropical regions, suggesting that application of advanced technologies, and stronger management practices, in addition to climate change mitigation, may be needed to intensify crop production over this century. The model also projects spatial variations in yields; notably, the higher temperatures in tropical and subtropical regions limit photosynthesis rates and reduce light interception, resulting in lower yields, particularly for soybean under RCP8.5‐SSP5.

     
    more » « less
  5. Abstract

    Many agricultural regions in China are likely to become appreciably wetter or drier as the global climate warming increases. However, the impact of these climate change patterns on the intensity of soil greenhouse gas (GHG) emissions (GHGI, GHG emissions per unit of crop yield) has not yet been rigorously assessed. By integrating an improved agricultural ecosystem model and a meta‐analysis of multiple field studies, we found that climate change is expected to cause a 20.0% crop yield loss, while stimulating soil GHG emissions by 12.2% between 2061 and 2090 in China's agricultural regions. A wetter‐warmer (WW) climate would adversely impact crop yield on an equal basis and lead to a 1.8‐fold‐ increase in GHG emissions relative to those in a drier‐warmer (DW) climate. Without water limitation/excess, extreme heat (an increase of more than 1.5°C in average temperature) during the growing season would amplify 15.7% more yield while simultaneously elevating GHG emissions by 42.5% compared to an increase of below 1.5°C. However, when coupled with extreme drought, it would aggravate crop yield loss by 61.8% without reducing the corresponding GHG emissions. Furthermore, the emission intensity in an extreme WW climate would increase by 22.6% compared to an extreme DW climate. Under this intense WW climate, the use of nitrogen fertilizer would lead to a 37.9% increase in soil GHG emissions without necessarily gaining a corresponding yield advantage compared to a DW climate. These findings suggest that the threat of a wetter‐warmer world to efforts to reduce GHG emissions intensity may be as great as or even greater than that of a drier‐warmer world.

     
    more » « less