skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling serological testing to inform relaxation of social distancing for COVID-19 control
Abstract Serological testing remains a passive component of the public health response to the COVID-19 pandemic. Using a transmission model, we examine how serological testing could have enabled seropositive individuals to increase their relative levels of social interaction while offsetting transmission risks. We simulate widespread serological testing in New York City, South Florida, and Washington Puget Sound and assume seropositive individuals partially restore their social contacts. Compared to no intervention, our model suggests that widespread serological testing starting in late 2020 would have averted approximately 3300 deaths in New York City, 1400 deaths in South Florida and 11,000 deaths in Washington State by June 2021. In all sites, serological testing blunted subsequent waves of transmission. Findings demonstrate the potential benefit of widespread serological testing, had it been implemented in the pre-vaccine era, and remain relevant now amid the potential for emergence of new variants.  more » « less
Award ID(s):
2032082 1806606 1829636
PAR ID:
10360769
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Deaths are frequently under-estimated during emergencies, times when accurate mortality estimates are crucial for emergency response. This study estimates excess all-cause, pneumonia and influenza mortality during the coronavirus disease 2019 (COVID-19) pandemic using the 11 September 2020 release of weekly mortality data from the United States (U.S.) Mortality Surveillance System (MSS) from 27 September 2015 to 9 May 2020, using semiparametric and conventional time-series models in 13 states with high reported COVID-19 deaths and apparently complete mortality data: California, Colorado, Connecticut, Florida, Illinois, Indiana, Louisiana, Massachusetts, Michigan, New Jersey, New York, Pennsylvania and Washington. We estimated greater excess mortality than official COVID-19 mortality in the U.S. (excess mortality 95% confidence interval (CI) 100 013–127 501 vs. 78 834 COVID-19 deaths) and 9 states: California (excess mortality 95% CI 3338–6344) vs. 2849 COVID-19 deaths); Connecticut (excess mortality 95% CI 3095–3952) vs. 2932 COVID-19 deaths); Illinois (95% CI 4646–6111) vs. 3525 COVID-19 deaths); Louisiana (excess mortality 95% CI 2341–3183 vs. 2267 COVID-19 deaths); Massachusetts (95% CI 5562–7201 vs. 5050 COVID-19 deaths); New Jersey (95% CI 13 170–16 058 vs. 10 465 COVID-19 deaths); New York (95% CI 32 538–39 960 vs. 26 584 COVID-19 deaths); and Pennsylvania (95% CI 5125–6560 vs. 3793 COVID-19 deaths). Conventional model results were consistent with semiparametric results but less precise. Significant excess pneumonia deaths were also found for all locations and we estimated hundreds of excess influenza deaths in New York. We find that official COVID-19 mortality substantially understates actual mortality, excess deaths cannot be explained entirely by official COVID-19 death counts. Mortality reporting lags appeared to worsen during the pandemic, when timeliness in surveillance systems was most crucial for improving pandemic response. 
    more » « less
  2. null (Ed.)
    Abstract Factors such as varied definitions of mortality, uncertainty in disease prevalence, and biased sampling complicate the quantification of fatality during an epidemic. Regardless of the employed fatality measure, the infected population and the number of infection-caused deaths need to be consistently estimated for comparing mortality across regions. We combine historical and current mortality data, a statistical testing model, and an SIR epidemic model, to improve estimation of mortality. We find that the average excess death across the entire US from January 2020 until February 2021 is 9 $$\%$$ % higher than the number of reported COVID-19 deaths. In some areas, such as New York City, the number of weekly deaths is about eight times higher than in previous years. Other countries such as Peru, Ecuador, Mexico, and Spain exhibit excess deaths significantly higher than their reported COVID-19 deaths. Conversely, we find statistically insignificant or even negative excess deaths for at least most of 2020 in places such as Germany, Denmark, and Norway. 
    more » « less
  3. Human behavior shapes epidemic trajectories, evolving as individuals reassess risks over time. Our study closes the loop between epidemic status, individual risk assessments, and interactions. We developed an agent-based model where the individuals can alter their decisions based on perceived risks. In our model, agents’ perceived risk is proxied by their full awareness of actual risks, such as the probability of infection or death. We conducted several simulations of COVID-19 spread for a large metropolitan city akin to New York City, covering the period from December 2020 to May 2021. Our model allows residents to decide daily on traveling to crowded city areas or stay in neighborhoods with relatively lower population density. Our base run simulations indicate that when individuals assess their own risk and understand how diseases spread, they adopt behaviors that slow the spread of virus, leading to fewer cumulative cases and deaths but extending the duration of the outbreak. This model was then simulated with various vaccination strategies such as random distribution, prioritizing older individuals, high-contact-rate individuals, or crowded area residents, all within a risk-response behavioral framework. Results show that, in the presence of agents’ behavioral response, there is only a marginal difference across different vaccination strategies. Specifically, vaccination in crowded areas slightly outperformed other vaccination strategies in reducing infections and prioritizing the elderly was slightly more effective in decreasing deaths. The lack of a universally superior vaccination strategy comes from the fact that lowering a risk leads to more risky behavior which partly compensates for vaccination effects. The comparable outcomes of random versus targeted vaccinations highlight the importance of equitable distribution as another key focus in pandemic responses. 
    more » « less
  4. Abstract Understanding SARS-CoV-2 transmission within and among communities is critical for tailoring public health policies to local context. However, analysis of community transmission is challenging due to a lack of high-resolution surveillance and testing data. Here, using contact tracing records for 644,029 cases and their contacts in New York City during the second pandemic wave, we provide a detailed characterization of the operational performance of contact tracing and reconstruct exposure and transmission networks at individual and ZIP code scales. We find considerable heterogeneity in reported close contacts and secondary infections and evidence of extensive transmission across ZIP code areas. Our analysis reveals the spatial pattern of SARS-CoV-2 spread and communities that are tightly interconnected by exposure and transmission. We find that locations with higher vaccination coverage and lower numbers of visitors to points-of-interest had reduced within- and cross-ZIP code transmission events, highlighting potential measures for curtailing SARS-CoV-2 spread in urban settings. 
    more » « less
  5. Abstract New York City (NYC) faces many challenges in the coming decades due to climate change and its interactions with social vulnerabilities and uneven urban development patterns and processes. This New York City Panel on Climate Change (NPCC) report contributes to the Panel's mandate to advise the city on climate change and provide timely climate risk information that can inform flexible and equitable adaptation pathways that enhance resilience to climate change. This report presents up‐to‐date scientific information as well as updated sea level rise projections of record. We also present a new methodology related to climate extremes and describe new methods for developing the next generation of climate projections for the New York metropolitan region. Future work by the Panel should compare the temperature and precipitation projections presented in this report with a subset of models to determine the potential impact and relevance of the “hot model” problem. NPCC4 expects to establish new projections‐of‐record for precipitation and temperature in 2024 based on this comparison and additional analysis. Nevertheless, the temperature and precipitation projections presented in this report may be useful for NYC stakeholders in the interim as they rely on the newest generation of global climate models. 
    more » « less