A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H⋯OC hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol −1 ) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O–H⋯OC hydrogen bond (1.5 kcal mol −1 ). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms.
more »
« less
Hydrogen bond design principles
Abstract Hydrogen bonding principles are at the core of supramolecular design. This overview features a discussion relating molecular structure to hydrogen bond strengths, highlighting the following electronic effects on hydrogen bonding: electronegativity, steric effects, electrostatic effects, π‐conjugation, and network cooperativity. Historical developments, along with experimental and computational efforts, leading up to the birth of the hydrogen bond concept, the discovery of nonclassical hydrogen bonds (CH…O, OH…π, dihydrogen bonding), and the proposal of hydrogen bond design principles (e.g., secondary electrostatic interactions, resonance‐assisted hydrogen bonding, and aromaticity effects) are outlined. Applications of hydrogen bond design principles are presented. This article is categorized under: Structure and Mechanism > Molecular Structures Structure and Mechanism > Reaction Mechanisms and Catalysis
more »
« less
- Award ID(s):
- 1751370
- PAR ID:
- 10360777
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- WIREs Computational Molecular Science
- Volume:
- 10
- Issue:
- 6
- ISSN:
- 1759-0876
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The molecular structure of the title compound, C 11 H 15 NO 2 S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H...O hydrogen bonds, as well as intermolecular C—H...π and π–π interactions, leading to the formation of sheets parallel to the ac plane.more » « less
-
A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O–H/O]C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol1) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar OH/OC hydrogen bond (1.5 kcal mol-1). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms.more » « less
-
null (Ed.)Numerous non-covalent interactions link together discrete molecules in the crystal structure of the title compound, 2C 20 H 26 N 2 O 2 2+ ·4Cl − ·H 2 O {systematic name: 4-[(5-ethenyl-1-azoniabicyclo[2.2.2]octan-2-yl)(hydroxy)methyl]-6-methoxyquinolin-1-ium dichloride hemihydrate}. A combination of hydrogen bonding between acidic H atoms and the anions in the asymmetric unit forms a portion of the observed hydrogen-bonded network. π–π interactions between the aromatic portions of the cation appear to play a role in the formation of the long-range ordering. One ethylene double bond was found to be disordered. The disorder extends to the neighboring carbon and hydrogen atoms.more » « less
-
The synthesis of the title compound, C 13 H 21 NO 2 S, is reported here along with its crystal structure. This compound crystallizes with two molecules in the asymmetric unit. The sulfonamide functional group of this structure features S=O bond lengths ranging from 1.433 (3) to 1.439 (3) Å, S—C bond lengths of 1.777 (3) and 1.773 (4) Å, and S—N bond lengths of 1.622 (3) and 1.624 (3) Å. When viewing the molecules down the S—N bond, the isopropyl groups are gauche to the aromatic ring. On each molecule, two methyl hydrogen atoms of one isopropyl group are engaged in intramolecular C—H...O hydrogen bonds with a nearby sulfonamide oxygen atom. Intermolecular C—H...O hydrogen bonds and C—H...π interactions link molecules of the title compound in the solid state.more » « less
An official website of the United States government
