skip to main content


Title: Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low‐oxygen cyanobacterial mats
Abstract

The sedimentary pyrite sulfur isotope (δ34S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34S geochemistry. Pyrite δ34S values often capture δ34S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34S trends and δ34S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment–water interface of this sinkhole hosts a low‐oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34S signatures in early Earth environments. Porewater sulfide δ34S values vary by up to ~25‰ throughout the day due to light‐driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34S variability, instead of variations in average cell‐specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34S values of pyrite are similar to porewater sulfide δ34S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34S signatures of pyrite deposited in organic‐rich, iron‐poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.

 
more » « less
Award ID(s):
1637066
NSF-PAR ID:
10360856
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Geobiology
Volume:
20
Issue:
1
ISSN:
1472-4677
Page Range / eLocation ID:
p. 60-78
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Ediacara biota features the rise of macroscopic complex life immediately before the Cambrian explosion. One of the most abundant and widely distributed elements of the Ediacara biota is the discoidal fossilAspidella, which is interpreted as a subsurface holdfast possibly anchoring a frondose epibenthic organism. It is a morphologically simple fossil preserved mainly in siliciclastic rocks, which are unsuitable for comprehensive stable isotope geochemical analyses to decipher its taphonomy and paleoecology. In this regard, three‐dimensionally preservedAspidellafossils from upper Ediacaran limestones of the Khatyspyt Formation in the Olenek Uplift of northern Siberia offer a rare opportunity to leverage geochemistry for insights into their taphonomy and paleoecology. To take advantage of this opportunity, we analyzed δ13Ccarb, δ18Ocarb, δ13Corg, δ34Spyr, and iron speciation of the KhatyspytAspidellafossils and surrounding sediment matrix in order to investigate whether they hosted microbial symbionts, how they were fossilized, and the redox conditions of their ecological environments.Aspidellaholdfasts and surrounding sediment matrix show indistinguishable δ13Corgvalues, suggesting they did not host and derive significant amount of nutrients from microbial symbionts such as methanogens, methylotrophs, or sulfide‐oxidizing bacteria. δ13Ccarb, δ18Ocarb, and δ34Spyrdata, along with petrographic observations, suggest that microbial sulfate reduction facilitated the preservation ofAspidellaby promoting early authigenic calcite cementation in the holdfasts before matrix cementation and sediment compaction. Iron speciation data are equivocal, largely because of the low total iron concentrations. However, consideration of published sulfur isotope and biomarker data suggests thatAspidellalikely lived in non‐euxinic waters. It is possible thatAspidellawas an opportunistic organism, colonizing the seafloor in large numbers when paleoenvironments were favorable. This study demonstrates that geochemical data of Ediacaran fossils preserved in limestones can offer important insights into the taphonomy and paleoecology of these enigmatic organisms living on the eve of the Cambrian explosion.

     
    more » « less
  2. Abstract

    Organic sulfur plays a crucial role in the biogeochemistry of aquatic sediments, especially in low sulfate (< 500 μM) environments like freshwater lakes and the Earth's early oceans. To better understand organic sulfur cycling in these systems, we followed organic sulfur in the sulfate‐poor (< 40 μM) iron‐rich (30–80 μM) sediments of Lake Superior from source to sink. We identified microbial populations with shotgun metagenomic sequencing and characterized geochemical species in porewater and solid phases. In anoxic sediments, we found an active sulfur cycle fueled primarily by oxidized organic sulfur. Sediment incubations indicated a microbial capacity to hydrolyze sulfonates, sulfate esters, and sulfonic acids to sulfate. Gene abundances for dissimilatory sulfate reduction (dsrAB) increased with depth and coincided with sulfide maxima. Despite these indicators of sulfide formation, sulfide concentrations remain low (< 40 nM) due to both pyritization and organic matter sulfurization. Immediately below the oxycline, pyrite accounted for 13% of total sedimentary sulfur. Both free and intact lipids in this same interval accumulated disulfides, indicating rapid sulfurization even at low concentrations of sulfide. Our investigation revealed a new model of sulfur cycling in a low‐sulfate environment that likely extends to other modern lakes and possibly the ancient ocean, with organic sulfur both fueling sulfate reduction and consuming the resultant sulfide.

     
    more » « less
  3. Liu, Shuang-Jiang (Ed.)
    ABSTRACT Glacial retreat is changing biogeochemical cycling in the Arctic, where glacial runoff contributes iron for oceanic shelf primary production. We hypothesize that in Svalbard fjords, microbes catalyze intense iron and sulfur cycling in low-organic-matter sediments. This is because low organic matter limits sulfide generation, allowing iron mobility to the water column instead of precipitation as iron monosulfides. In this study, we tested this with high-depth-resolution 16S rRNA gene libraries in the upper 20 cm at two sites in Van Keulenfjorden, Svalbard. At the site closer to the glaciers, iron-reducing Desulfuromonadales , iron-oxidizing Gallionella and Mariprofundus , and sulfur-oxidizing Thiotrichales and Epsilonproteobacteria were abundant above a 12-cm depth. Below this depth, the relative abundances of sequences for sulfate-reducing Desulfobacteraceae and Desulfobulbaceae increased. At the outer station, the switch from iron-cycling clades to sulfate reducers occurred at shallower depths (∼5 cm), corresponding to higher sulfate reduction rates. Relatively labile organic matter (shown by δ 13 C and C/N ratios) was more abundant at this outer site, and ordination analysis suggested that this affected microbial community structure in surface sediments. Network analysis revealed more correlations between predicted iron- and sulfur-cycling taxa and with uncultured clades proximal to the glacier. Together, these results suggest that complex microbial communities catalyze redox cycling of iron and sulfur, especially closer to the glacier, where sulfate reduction is limited due to low availability of organic matter. Diminished sulfate reduction in upper sediments enables iron to flux into the overlying water, where it may be transported to the shelf. IMPORTANCE Glacial runoff is a key source of iron for primary production in the Arctic. In the fjords of the Svalbard archipelago, glacial retreat is predicted to stimulate phytoplankton blooms that were previously restricted to outer margins. Decreased sediment delivery and enhanced primary production have been hypothesized to alter sediment biogeochemistry, wherein any free reduced iron that could potentially be delivered to the shelf will instead become buried with sulfide generated through microbial sulfate reduction. We support this hypothesis with sequencing data that showed increases in the relative abundance of sulfate reducing taxa and sulfate reduction rates with increasing distance from the glaciers in Van Keulenfjorden, Svalbard. Community structure was driven by organic geochemistry, suggesting that enhanced input of organic material will stimulate sulfate reduction in interior fjord sediments as glaciers continue to recede. 
    more » « less
  4. Abstract

    Sedimentary pyrite records are essential for reconstructing paleoenvironmental conditions, but these records may be affected by seasonal fluctuations in oxygen concentration and temperature, which can impact bioturbation, sulfide fluxes, and distributions of sulfide oxidizing microbes (SOMs). To investigate how seasonal oxygen stress influences surficial (<2 cm) pyrite formation, we measured time‐series concentrations and sulfur isotope (δ34S) compositions of pyrite sulfur along with those of potential precursor compounds at a bioturbated shoal site and an oxygen‐deficient channel site in Chesapeake Bay. We also measured radioisotope depth profiles to estimate sedimentation rates and bioturbation intensities. Results show that net pyrite precipitation was restricted to summer and early autumn at both sites. Pyrite concentration was higher and apparently more responsive to precursor compound concentration at the mildly bioturbated site than at the non‐bioturbated site. This disparity may be driven by differences in the dominant SOM communities between the two sites. Despite this, the sites' similar pyrite δ34S values imply that changes in SOM communities have limited effects on surficial pyrite δ34S values here. However, we found that pyrite δ34S values are consistently and anomalously lower than coeval precursor compounds at both sites. A steady‐state model demonstrates that equilibrium position‐specific isotope fractionation (PSIF) effects in the S8‐polysulfide pool can create a 4.3–7.3‰ gap between δ34S values of pyrite and zero‐valent sulfur. This study suggests that SOM communities may have distinct effects on pyrite accumulation in seasonally dynamic systems, and that PSIF in the polysulfide pool may leave an imprint in pyrite isotope records.

     
    more » « less
  5. Abstract

    For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated byPhormidiumandPlanktothrixthat is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16SrRNAgene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa ofDeltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in theMISwere distinctly different from those in typicalLHsediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related toMISmicrobial community composition, whileLHcommunities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.

     
    more » « less