skip to main content


Title: No evidence for a strong decrease of planetesimal accretion in old white dwarfs
ABSTRACT

A large fraction of white dwarfs are accreting or have recently accreted rocky material from their planetary systems, thereby ‘polluting’ their atmospheres with elements heavier than helium. In recent years, the quest for mechanisms that can deliver planetesimals to the immediate vicinity of their central white dwarfs has stimulated a flurry of modelling efforts. The observed time evolution of the accretion rates of white dwarfs through their multi-Gyr lifetime is a crucial test for dynamical models of evolved planetary systems. Recent studies of cool white dwarf samples have identified a significant decrease of the mass accretion rates of cool, old white dwarfs over Gyr time-scales. Here, we revisit those results using updated white dwarf models and larger samples of old polluted H- and He-atmosphere white dwarfs. We find no compelling evidence for a strong decrease of their time-averaged mass accretion rates for cooling times between 1 and 8 Gyr. Over this period, the mass accretion rates decrease by no more than a factor of the order of 10, which is one order of magnitude smaller than the decay rate found in recent works. Our results require mechanisms that can efficiently and consistently deliver planetesimals inside the Roche radius of white dwarfs over at least 8 Gyr.

 
more » « less
NSF-PAR ID:
10360904
Author(s) / Creator(s):
;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1059-1067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Secular oscillations in multiplanet systems can drive chaotic evolution of a small inner body through non-linear resonant perturbations. This ‘secular chaos’ readily pushes the inner body to an extreme eccentricity, triggering tidal interactions or collision with the central star. We present a numerical study of secular chaos in systems with two planets and test particles using the ring-averaging method, with emphasis on the relationship between the planets’ properties and the time-scale and efficiency of chaotic diffusion. We find that secular chaos can excite extreme eccentricities on time-scales spanning several orders of magnitude in a given system. We apply our results to the evolution of planetary systems around white dwarfs (WDs), specifically the tidal disruption and high-eccentricity migration of planetesimals and planets. We find that secular chaos in a planetesimal belt driven by large (≳10 M⊕), distant ($\gtrsim 10 \, \mathrm{au}$) planets can sustain metal accretion on to a WD over Gyr time-scales. We constrain the total mass of planetesimals initially present within the chaotic zone by requiring that the predicted mass delivery rate to the Roche limit be consistent with the observed metal accretion rates of WDs with atmospheric pollution throughout the cooling sequence. Based on the occurrence of long-period exoplanets and exo-asteroid belts, we conclude that secular chaos can be a significant (perhaps dominant) channel for polluting solitary WDs. Secular chaos can also produce short-period planets and planetesimals around WDs in concert with various circularization mechanisms. We discuss prospects for detecting exoplanets driving secular chaos around WDs using direct imaging and microlensing.

     
    more » « less
  2. We have used the Jansky VLA to observe a sample of 5 known aurorally emitting late L and T dwarfs ranging in age from 0.2-3.4 Gyr. We observed each target for seven hours, extending to higher frequencies than previously attempted for objects in this sample. We establish proportionally higher limits on maximum surface magnetic field strengths while simultaneously placing constraints on rotation periods through detections of repeating pulses. Observations at 8{12 GHz yield measurements of 3.7{4.1 kG localized field strengths (corresponding to minimum mean surface fields between 2.7{2.9 kG) on four of our targets, including the archetypal cloud variable T2.5 dwarf SIMP J01365663+0933473 recently proposed to be a possible planetary-mass object in the Carina-Near moving group. We detect a circularly polarized radio pulse at 15{16.5 GHz for the T6.5 dwarf 2MASS 10475385+2124234, corresponding to a localized 5.6 kG field strength and minimum mean surface field of 4.0 kG. For the same object, we also tentatively detect a circularly polarized radio pulse at 16.5{18 GHz corresponding to a localized 6.2 kG field strength and minimum mean surface field of 4.4 kG. We measure rotation periods between 1.44-2.88 hr for all targets, supporting i) the emerging consensus in convective dynamo models that rapid rotation may be important for producing strong dipole fields and/or ii) rapid rotation is a key ingredient for driving the current systems powering auroral radio emission. We do not detect a clear cutoff in the pulsed emission for any targets, which would correspond to a maximum local surface magnetic field strength. However, we do observe evidence of variable structure in the frequency-dependent timeseries of our targets on timescales shorter than a rotation period, suggesting a higher degree of variability in the current systems near the surfaces of brown dwarfs, where emission at the highest frequencies are expected to probe. Finally, we find that old brown dwarfs may generate fields as strong as young brown dwarfs. 
    more » « less
  3. Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations – reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution. 
    more » « less
  4. ABSTRACT The inwards scattering of planetesimals towards white dwarfs is expected to be a stochastic process with variability on human time-scales. The planetesimals tidally disrupt at the Roche radius, producing dusty debris detectable as excess infrared emission. When sufficiently close to the white dwarf, this debris sublimates and accretes on to the white dwarf and pollutes its atmosphere. Studying this infrared emission around polluted white dwarfs can reveal how this planetary material arrives in their atmospheres. We report a near-infrared monitoring campaign of 34 white dwarfs with infrared excesses with the aim to search for variability in the dust emission. Time series photometry of these white dwarfs from the United Kingdom Infrared Telescope (Wide Field Camera) in the J-, H-, and K-bands was obtained over baselines of up to 3 yr. We find no statistically significant variation in the dust emission in all three near-infrared bands. Specifically, we can rule out variability at ∼1.3 per cent for the 13 white dwarfs brighter than 16th mag in K-band, and at ∼10 per cent for the 32 white dwarfs brighter than 18th mag over time-scales of 3 yr. Although to date two white dwarfs, SDSS J095904.69−020047.6 and WD 1226+110, have shown K-band variability, in our sample we see no evidence of new K-band variability at these levels. One interpretation is that the tidal disruption events that lead to large variabilities are rare occur on short time-scales, and after a few years the white dwarfs return to being stable in the near-infrared. 
    more » « less
  5. ABSTRACT

    Planet engulfment can be inferred from enhancement of refractory elements in the photosphere of the engulfing star following accretion of rocky planetary material. Such refractory enrichments are subject to stellar interior mixing processes, namely thermohaline mixing induced by an inverse mean-molecular-weight gradient between the convective envelope and radiative core. Using mesa stellar models, we quantified the strength and duration of engulfment signatures following planet engulfment. We found that thermohaline mixing dominates during the first ∼5–45 Myr post-engulfment, weakening signatures by a factor of ∼2 before giving way to depletion via gravitational settling on longer time-scales. Solar metallicity stars in the 0.5–1.2 M⊙ mass range have observable signature time-scales of ∼1 Myr–8 Gyr, depending on the engulfing star mass and amount of material engulfed. Early type stars exhibit larger initial refractory enhancements but more rapid depletion. Solar-like stars (M = 0.9–1.1 M⊙) maintain observable signatures (>0.05 dex) over time-scales of ∼20 Myr–1.7 Gyr for nominal 10 M⊕ engulfment events, with longer-lived signatures occurring for low-metallicity and/or hotter stars (1 M⊙, ∼2–3 Gyr). Engulfment events occurring well after the zero-age main sequence produce larger signals due to suppression of thermohaline mixing by gravitational settling of helium (1 M⊙, ∼1.5 Gyr). These results indicate that it may be difficult to observe engulfment signatures in solar-like stars that are several Gyr old.

     
    more » « less