skip to main content

Title: Effects of a novel ectoparasite on condition and mouth coloration of nestling barn swallows
Abstract

Parasites have profound and widespread implications for the ecology and evolution of hosts, and human activity has increased the frequency of interactions between hosts and parasites that have not co-evolved. For example, by building habitat attractive for nesting, humans might have facilitated range expansion by cliff swallows (Petrochelidon pyrrhonata) and barn swallows (Hirundo rustica) in North America, concurrently allowing a haematophagous ectoparasite of cliff swallows, the swallow bug (Oeciacus vicarious), to infest the nests of barn swallows. We found that in barn swallow nests infested with swallow bugs, nestlings weighed less and had lower haematocrit, and the within-brood variation in body mass and tarsus length was higher. Information about these negative effects might be available to parents via mouth coloration, a condition-dependent component of the begging signal. We found that nestlings from infested broods had lower-intensity carotenoid-based and ultraviolet mouth colours, although most elements of colour were unrelated to parasites. Host switching by the swallow bug offers excellent opportunities to understand the direct and indirect effects of a novel parasite and might also afford insights into how parasites cope with selective pressures exerted by closely related hosts with key ecological differences.

Authors:
;
Publication Date:
NSF-PAR ID:
10360967
Journal Name:
Biological Journal of the Linnean Society
Volume:
135
Issue:
1
Page Range or eLocation-ID:
p. 52-61
ISSN:
0024-4066
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Life history theory predicts that increased investment in current offspring decreases future fecundity or survival. Avian parental investment decisions have been studied either via brood size manipulation or direct manipulation of parental energetic costs (also known as handicapping). However, we have limited experimental data on the potential interactive effects of these manipulations on parent behavior. Additionally, we know little about how these manipulations affect spatial foraging behavior away from the nest. We simultaneously manipulated brood size and parental costs (via added weight in the form of a GPS tag) in wild female barn swallows (Hirundo rustica). We measured multiple aspects of parent behavior at and away from the nest while controlling for measures of weather conditions. We found no significant interactive effects of manipulated brood size and parental costs. Both sexes increased their visitation rate with brood size, but nestlings in enlarged broods grew significantly less post-brood size manipulation than those in reduced broods. Foraging range area was highly variable among GPS-tagged females but was unaffected by brood size. As such, increased visitation rate in response to brood size may be more energetically costly for far-ranging females. GPS-tagged females did not alter their visitation rate relative to un-tagged birds, butmore »their mates had higher visitation rates. This suggests that GPS tagging may affect some unmeasured aspect of female behavior, such as prey delivery. Our findings indicate that investigation of foraging tactics alongside visitation rate is critical to understanding parental investment and the benefits and costs of reproduction.

    Significance statement

    Avian parental investment decisions have been studied by either brood size manipulation or direct manipulation of parental costs, but rarely both simultaneously. We simultaneously manipulated brood size and parental costs (via addition of a GPS tag) in a wild avian system, allowing us to examine interactive effects of these manipulations. Additionally, studies of parental investment often examine behaviors at the nest, but measurements of parental care behavior away from the nest are rare. Our study is unique in that we measured multiple aspects of parental care, including spatial foraging behavior tracked with GPS tags. We found no interactive effects of manipulated brood size and parental costs on visitation rate or nestling growth, and spatial foraging behavior of females was individually variable. Documenting foraging tactics alongside visitation rate is critical to understanding parental investment because the same visitation rate might be more costly for far-ranging females.

    « less
  2. Ruiz-Rodriguez, Magdalena (Ed.)
    Some birds exhibit a maxillary overhang, in which the tip of the upper beak projects beyond the lower mandible and may curve downward. The overhang is thought to help control ectoparasites on the feathers. Little is known about the extent to which the maxillary overhang varies spatially or temporally within populations of the same species. The colonial cliff swallow ( Petrochelidon pyrrhonota ) has relatively recently shifted to almost exclusive use of artificial structures such as bridges and highway culverts for nesting and consequently has been exposed to higher levels of parasitism than on its ancestral cliff nesting sites. We examined whether increased ectoparasitism may have favored recent changes in the extent of the maxillary overhang. Using a specimen collection of cliff swallows from western Nebraska, USA, spanning 40 years and field data on live birds, we found that the extent of the maxillary overhang increased across years in a nonlinear way, peaking in the late 2000’s, and varied inversely with cliff swallow colony size for unknown reasons. The number of fleas on nestling cliff swallows declined in general over this period. Those birds with perceptible overhangs had fewer swallow bugs on the outside of their nest, but they didmore »not have higher nesting success than birds with no overhangs. The intraspecific variation in the maxillary overhang in cliff swallows was partly consistent with it having a functional role in combatting ectoparasites. The temporal increase in the extent of the overhang may be a response by cliff swallows to their relatively recent increased exposure to parasitism. Our results demonstrate that this avian morphological trait can change rapidly over time.« less
  3. Petrochelidon pyrrhonota (Cliff Swallow) is experiencing significant population declines in parts of its breeding range, particularly in northeastern North America. At 12 active Cliff Swallow colonies in western Massachusetts in 2019–2020, we examined the extent to which installation of artificial nests, providing of mud sources, and control of Passer domesticus (House Sparrow) affected colony size and reproductive success of Cliff Swallows. While there was a trend for colony size to increase at sites with artificial nests, there was not a significant size increase at these sites from 2019–2020. Cliff Swallow nesting success was significantly lower at colony sites where House Sparrows were present, compared to those at which they were absent. The number of nesting Cliff Swallows at 2 sites where mud sources were enhanced increased from 2019 to 2020. Efforts to control House Sparrows by shooting at 1 site were unsuccessful. Our study suggests that without effective control of House Sparrows, Cliff Swallows are likely to keep declining in Massachusetts, regardless of other management techniques used.
  4. Cooke, Steven (Ed.)
    Abstract Haematophagous ectoparasites can directly affect the health of young animals by depleting blood volume and reducing energetic resources available for growth and development. Less is known about the effects of ectoparasitism on stress physiology (i.e. glucocorticoid hormones) or animal behaviour. Mexican chicken bugs (Haematosiphon inodorus; Hemiptera: Cimicidae) are blood-sucking ectoparasites that live in nesting material or nest substrate and feed on nestling birds. Over the past 50 years, the range of H. inodorus has expanded, suggesting that new hosts or populations may be vulnerable. We studied the physiological and behavioural effects of H. inodorus on golden eagle (Aquila chrysaetos) nestlings in southwestern Idaho. We estimated the level of H. inodorus infestation at each nest and measured nestling mass, haematocrit, corticosterone concentrations, telomere lengths and recorded early fledging and mortality events. At nests with the highest levels of infestation, nestlings had significantly lower mass and haematocrit. In addition, highly parasitized nestlings had corticosterone concentrations twice as high on average (42.9 ng/ml) than non-parasitized nestlings (20.2 ng/ml). Telomeres of highly parasitized female nestlings significantly shortened as eagles aged, but we found no effect of parasitism on the telomeres of male nestlings. Finally, in nests with higher infestation levels, eagle nestlings were 20 times moremore »likely to die, often because they left the nest before they could fly. These results suggest that H. inodorus may limit local golden eagle populations by decreasing productivity. For eagles that survived infestation, chronically elevated glucocorticoids and shortened telomeres may adversely affect cognitive function or survival in this otherwise long-lived species. Emerging threats from ectoparasites should be an important management consideration for protected species, like golden eagles.« less
  5. Abstract

    The survival of insects that are dormant in winter may either increase or decrease as a consequence of elevated winter temperatures under climate change. Warming can be deleterious when metabolism of the overwintering life stages increases to the point that energy reserves are exhausted before postoverwintering reemergence. We examined experimentally how overwintering survival of swallow bugs (Hemiptera: Cimicidae: Cimex vicarius Horvath), an ectoparasite primarily of cliff swallows (Passeriformes: Hirundinidae: Petrochelidon pyrrhonota Vieillot), was affected by a 3°C rise in mean daily temperature for populations in Oklahoma, Nebraska, and North Dakota. Adult and nymphal swallow bugs exposed to elevated temperature had an average reduction of approximately 31% in overwintering survival (from July/August to April/May), relative to controls exposed to current region-specific ambient-like conditions. Adult males in both groups survived less well in Nebraska and North Dakota than adult males in Oklahoma, but there was no consistent latitudinal effect of the elevated heat treatment. Our results indicate that projected increases in mean temperature in the Great Plains by 2050 could result in fewer swallow bugs surviving the winter and thus a reduced population size upon the arrival of their primary host in the spring, potentially affecting cliff swallow reproductive success, sitemore »use, and breeding phenology. Global climate change may alter the dynamics of host–parasite systems by reducing overall parasite abundance.

    « less