skip to main content


Title: The large-scale distribution of ionized metals in IllustrisTNG
ABSTRACT

We study the intrinsic large-scale distribution and evolution of seven ionized metals in the IllustrisTNG magnetohydrodynamical cosmological simulation. We focus on the fractions of C ii, C iv, Mg ii, N v, Ne viii, O vi, and Si iv in different cosmic web structures (filaments, haloes, and voids) and gas phases (warm–hot intergalactic medium, hot, diffuse, and condensed gas) from z = 6 to z = 0. Our analysis provides a new perspective to the study of the distribution and evolution of baryons across cosmic time while offering new hints in the context of the well-known missing baryons problem. The cosmic web components are here identified using the local comoving dark matter density, which provides a simple but effective way of mapping baryons on large scales. Our results show that C ii and Mg ii are mostly located in condensed gas inside haloes in high-density and low-temperature star-forming regions ($\rho _{\rm gas}/\bar{\rho }_{\rm bar}\gtrsim 10^3$, and T ≲ 105 K). C iv and Si iv present similar evolution of their mass fractions in haloes and filaments across cosmic time. In particular, their mass budgets in haloes in condensed phase ($\rho _{\rm gas}/\bar{\rho }_{\rm bar}\gtrsim 10^3$, and T ≲ 105 K) are driven by gas cooling and star formation with a peak at z ∼ 2. Finally, our results confirm that O vi, Ne viii, and N v are good tracers of warm/hot and low-density gas at low redshift ($\rho _{\rm gas}/\bar{\rho }_{\rm bar}\lesssim 10^3$, and T ≳ 105 K), regions that are likely to contain most of the missing baryons in the local Universe.

 
more » « less
NSF-PAR ID:
10360977
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
510
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 399-412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity $\kappa \sim 3\times 10^{29}\, \mathrm{cm^2\ s^{-1}}$ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ${\sim}10^{4}\,$ K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O vi columns ${\gtrsim}10^{14.5}\, \mathrm{cm^{-2}}$ at distances ${\gtrsim}150\, \mathrm{kpc}$. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot ($T\gtrsim 10^{5}\,$K) with thermal pressure balancing gravity, collisional ionization dominates, O vi columns are lower and Ne viii higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase. 
    more » « less
  2. null (Ed.)
    ABSTRACT Observations of ultraviolet (UV) metal absorption lines have provided insight into the structure and composition of the circumgalactic medium (CGM) around galaxies. We compare these observations with the low-redshift (z ≤ 0.3) CGM around dwarf galaxies in high-resolution cosmological zoom-in runs in the FIRE-2 (Feedback In Realistic Environments) simulation suite. We select simulated galaxies that match the halo mass, stellar mass, and redshift of the observed samples. We produce absorption measurements using trident for UV transitions of C iv, O vi, Mg ii, and Si iii. The FIRE equivalent width (EW) distributions and covering fractions for the C iv ion are broadly consistent with observations inside 0.5Rvir, but are underpredicted for O vi, Mg ii, and Si iii. The absorption strengths of the ions in the CGM are moderately correlated with the masses and star formation activity of the galaxies. The correlation strengths increase with the ionization potential of the ions. The structure and composition of the gas from the simulations exhibit three zones around dwarf galaxies characterized by distinct ion column densities: the discy interstellar medium, the inner CGM (the wind-dominated regime), and the outer CGM (the IGM accretion-dominated regime). We find that the outer CGM in the simulations is nearly but not quite supported by thermal pressure, so it is not in hydrostatic equilibrium, resulting in halo-scale bulk inflow and outflow motions. The net gas inflow rates are comparable to the star formation rate of the galaxy, but the bulk inflow and outflow rates are greater by an order of magnitude, with velocities comparable to the virial velocity of the halo. These roughly virial velocities (${\sim } 100 \, \rm km\, s^{-1}$) produce large EWs in the simulations. This supports a picture for dwarf galaxies in which the dynamics of the CGM at large scales are coupled to the small-scale star formation activity near the centre of their haloes. 
    more » « less
  3. ABSTRACT Intervening C iv absorbers are key tracers of metal-enriched gas in galaxy haloes over cosmic time. Previous studies suggest that the C iv cosmic mass density ($\Omega _{\rm C \, \small {IV}}$) decreases slowly over 1.5 $\lesssim \, z\lesssim$ 5 before declining rapidly at z ≳ 5, but the cause of this downturn is poorly understood. We characterize the $\Omega _{\rm C \, \small {IV}}$ evolution over 4.3 ≲ z ≲ 6.3 using 260 absorbers found in 42 XSHOOTER spectra of z ∼ 6 quasars, of which 30 come from the ESO Large Program XQR-30. The large sample enables us to robustly constrain the rate and timing of the downturn. We find that $\Omega _{\rm C \, \small {IV}}$ decreases by a factor of 4.8 ± 2.0 over the ∼300 Myr interval between z ∼ 4.7 and ∼5.8. The slope of the column density (log N) distribution function does not change, suggesting that C iv absorption is suppressed approximately uniformly across 13.2 ≤ log N/cm−2 < 15.0. Assuming that the carbon content of galaxy haloes evolves as the integral of the cosmic star formation rate density (with some delay due to stellar lifetimes and outflow travel times), we show that chemical evolution alone could plausibly explain the fast decline in $\Omega _{\rm C \, \small {IV}}$ over 4.3 ≲ z ≲ 6.3. However, the C iv/C ii ratio decreases at the highest redshifts, so the accelerated decline in $\Omega _{\rm C \, \small {IV}}$ at z ≳ 5 may be more naturally explained by rapid changes in the gas ionization state driven by evolution of the UV background towards the end of hydrogen reionization. 
    more » « less
  4. ABSTRACT

    We analyse the internal structure and dynamics of cosmic-web filaments connecting massive high-z haloes. Our analysis is based on a high-resolution arepo cosmological simulation zooming-in on three Mpc-scale filaments feeding three massive haloes of $\sim 10^{12}\, \text{M}_\odot$ at z ∼ 4, embedded in a large-scale sheet. Each filament is surrounded by a cylindrical accretion shock of radius $r_{\rm shock} \sim 50 \, {\rm kpc}$. The post-shock gas is in virial equilibrium within the potential well set by an isothermal dark-matter filament. The filament line-mass is $\sim 9\times 10^8\, \text{M}_\odot \, {\rm kpc}^{-1}$, the gas fraction within rshock is the universal baryon fraction, and the virial temperature is ∼7 × 105 K. These all match expectations from analytical models for filament properties as a function of halo mass and redshift. The filament cross-section has three radial zones. In the outer ‘thermal’ (T) zone, $r \ge 0.65 \, r_{\rm shock}$, inward gravity, and ram-pressure forces are overbalanced by outward thermal pressure forces, decelerating the inflowing gas and expanding the shock outwards. In the intermediate ‘vortex’ (V) zone, 0.25 ≤ r/rshock ≤ 0.65, the velocity field is dominated by a quadrupolar vortex structure due to offset inflow along the sheet through the post-shock gas. The outward force is dominated by centrifugal forces associated with these vortices, with additional contributions from global rotation and thermal pressure. Shear and turbulent forces associated with the vortices act inwards. The inner ‘stream’ (S) zone, $r \lt 0.25 \, r_{\rm shock}$, is a dense isothermal core, $T\sim 3 \times 10^4 \, {\rm K}$ and $n_{\rm H}\sim 0.01 \, {\rm cm^{-3}}$, defining the cold streams that feed galaxies. The core is formed by an isobaric cooling flow and is associated with a decrease in outward forces, though exhibiting both inflows and outflows.

     
    more » « less
  5. ABSTRACT We revisit the question of ‘hot mode’ versus ‘cold mode’ accretion on to galaxies using steady-state cooling flow solutions and idealized 3D hydrodynamic simulations. We demonstrate that for the hot accretion mode to exist, the cooling time is required to be longer than the free-fall time near the radius where the gas is rotationally supported, Rcirc, i.e. the existence of the hot mode depends on physical conditions at the galaxy scale rather than on physical conditions at the halo scale. When allowing for the depletion of the halo baryon fraction relative to the cosmic mean, the longer cooling times imply that a virialized gaseous halo may form in halo masses below the threshold of $\sim 10^{12}\, {\rm M_{\odot }}$ derived for baryon-complete haloes. We show that for any halo mass there is a maximum accretion rate for which the gas is virialized throughout the halo and can accrete via the hot mode of ${\dot{M}}_{\rm crit}\approx 0.7(v_{\rm c}/100\, \rm km\ s^{-1})^{5.4}(R_{\rm circ}/10\, {\rm kpc})(Z/\, {\rm Z_{\odot }})^{-0.9}\, {\rm M_{\odot }}\, {\rm yr}^{-1}$, where Z and vc are the metallicity and circular velocity measured at Rcirc. For accretion rates $\gtrsim {\dot{M}}_{\rm crit}$ the volume-filling gas phase can in principle be ‘transonic’ – virialized in the outer halo but cool and free-falling near the galaxy. We compare ${\dot{M}}_{\rm crit}$ to the average star formation rate (SFR) in haloes at 0 < z < 10 implied by the stellar-mass–halo-mass relation. For a plausible metallicity evolution with redshift, we find that ${\rm SFR}\lesssim {\dot{M}}_{\rm crit}$ at most masses and redshifts, suggesting that the SFR of galaxies could be primarily sustained by the hot mode in halo masses well below the classic threshold of $\sim 10^{12}\, {\rm M_{\odot }}$. 
    more » « less