skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prochlorococcus , Synechococcus , and picoeukaryotic phytoplankton abundances in the global ocean
Abstract Marine picophytoplankton is the most abundant photosynthetic group on Earth; however, it is still underrepresented in dynamic ecosystem models. Major constraints for understanding its role in the ecosystem at a global scale are sparse data and lack of a baseline description of its distribution. Here, we present three datasets to assess the global abundance of the principal groups of picophytoplankton,Prochlorococcus,Synechococcus, and picoeukaryotic phytoplankton: (1) a compilation of 109,045 field observations with ancillary environmental data, (2) a global monthly climatology of 1° grids from 0 to 200 m, and (3) four climate scenarios projections, from the Coupled Model Intercomparison Project 5, spanning years 1901 to 2100. Together this set of observational and modeled data can improve our understanding of the role of picophytoplankton in the global ecosystem.  more » « less
Award ID(s):
1848576 1559002
PAR ID:
10361043
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography Letters
Volume:
6
Issue:
4
ISSN:
2378-2242
Format(s):
Medium: X Size: p. 207-215
Size(s):
p. 207-215
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Picophytoplankton are a ubiquitous component of marine plankton communities and are expected to be favored by global increases in seawater temperature and stratification associated with climate change. Eukaryotic and prokaryotic picophytoplankton have distinct ecology, and global models predict that the two groups will respond differently to future climate scenarios. At a nearshore observatory on the Northeast US Shelf, however, decades of year‐round monitoring have shown these two groups to be highly synchronized in their responses to environmental variability. To reconcile the differences between regional and global predictions for picophytoplankton dynamics, we here investigate the picophytoplankton community across the continental shelf gradient from the nearshore observatory to the continental slope. We analyze flow cytometry data from 22 research cruises, comparing the response of picoeukaryote andSynechococcuscommunities to environmental variability across time and space. We find that the mechanisms controlling picophytoplankton abundance differ across taxa, season, and distance from shore. Like the prokaryote,Synechococcus, picoeukaryote division rates are limited nearshore by low temperatures in winter and spring, and higher temperatures offshore lead to an earlier spring bloom. UnlikeSynechococcus, picoeukaryote concentration in summer decreases dramatically in offshore surface waters and exhibits deeper subsurface maxima. The offshore picoeukaryote community appears to be nutrient limited in the summer and subject to much greater loss rates thanSynechococcus. This work both produces and demonstrates the necessity of taxon‐ and site‐specific knowledge for accurately predicting the responses of picophytoplankton to ongoing environmental change. 
    more » « less
  2. Abstract Hourly, year‐round flow cytometry has made it possible to relate seasonal environmental variability to the population dynamics of the smallest, most abundant phytoplankton on the Northeast US Shelf. To evaluate whether the insights from these data extend toSynechococcusfarther from shore, we analyze flow cytometry measurements made continuously from the underway systems on 21 cruises traveling between the Martha's Vineyard Coastal Observatory (MVCO) and the continental shelf break. We describe how seasonal patterns inSynechococcus, which have been documented in detail at MVCO, occur across the region with subtle variation. We find that the underlying relationship between temperature and division rate is consistent across the shelf and can explain much of the observed spatial variability in concentration. Connecting individual cell properties to annual and regional patterns in environmental conditions, these results demonstrate the value of autonomous monitoring and create an improved picture of picophytoplankton dynamics within an economically important ecosystem. 
    more » « less
  3. Abstract The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role ofAmmodytesto inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role ofAmmodytesin the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consumeAmmodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution ofAmmodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment ofAmmodytesin the NWA and are intended to inform new research and support regional ecosystem‐based management approaches. 
    more » « less
  4. Abstract The Costa Rica Dome (CRD) is an open‐ocean upwelling ecosystem, with high biomasses of picophytoplankton (especiallySynechococcus), mesozooplankton, and higher trophic levels. To elucidate the food web pathways supporting the trophic structure and carbon export in this unique ecosystem, we used Markov Chain Monte Carlo techniques to assimilate data from four independent realizations of δ15N and planktonic rate measurements from the CRD into steady state, multicompartment ecosystem box models (linear inverse models). Model results present well‐constrained snapshots of ecosystem nitrogen and stable isotope fluxes. New production is supported by upwelled nitrate, not nitrogen fixation. Protistivory (rather than herbivory) was the most important feeding mode for mesozooplankton, which rely heavily on microzooplankton prey. Mesozooplankton play a central role in vertical nitrogen export, primarily through active transport of nitrogen consumed in the surface layer and excreted at depth, which comprised an average 36–46% of total export. Detritus or aggregate feeding is also an important mode of resource acquisition by mesozooplankton and regeneration of nutrients within the euphotic zone. As a consequence, the ratio of passively sinking particle export to phytoplankton production is very low in the CRD. Comparisons to similar models constrained with data from the nearby equatorial Pacific demonstrate that the dominant role of vertical migrators to the biological pump is a unique feature of the CRD. However, both regions show efficient nitrogen transfer from mesozooplankton to higher trophic levels (as expected for regions with large fish, cetacean, and seabird populations) despite the dominance of protists as major grazers of phytoplankton. 
    more » « less
  5. Picophytoplankton populations [Prochlorococcus,Synechococcus(SYN), and picoeukaryotes] are dominant primary producers in the open ocean and projected to become more important with climate change. Their fates can vary, however, with microbial food web complexities. In the California Current Ecosystem, picophytoplankton biomass and abundance peak in waters of intermediate productivity and decrease at higher production. Using experimental data from eight cruises crossing the pronounced CCE trophic gradient, we tested the hypothesis that these declines are driven by intensified grazing on heterotrophic bacteria (HBAC) passed to similarly sized picophytoplankton via shared predators. Results confirm previously observed distributions as well as significant increases in bacterial abundance, cell growth, and grazing mortality with primary production. Mortalities of picophytoplankton, however, diverge from the bacterial mortality trend such that relative grazing rates on SYN compared to HBAC decline by 12-fold between low and high productivity waters. The large shifts in mortality rate ratios for coexisting populations are not explained by size variability but rather suggest high selectivity of grazer assemblages or tightly coupled tradeoffs in microbial growth advantages and grazing vulnerabilities. These findings challenge the long-held view that protistan grazing mainly determines overall biomass of microbial communities while viruses uniquely regulate diversity by “killing the winners”. 
    more » « less