skip to main content


Title: Upper Plate Heterogeneity Along the Southern Hikurangi Margin, New Zealand
Abstract

Controlled and natural source seismic data are used to build a 3‐DPwave model for southern North Island, New Zealand, where the Pacific Plate subducts beneath the Australian Plate at a rate of ~41 mm/year. Our analysis reveals an abrupt along‐strike transition in overthrusting plate structure within Cook Strait. Contrasts in properties (Vp, Vp/Vs, and Qs) likely reflects the degree of deformation in the Australian Plate, where the Alpine‐Wairau and Awatere Faults mark the northern boundary of a terrane that has undergone >50° of clockwise vertical‐axis rotation since the early Miocene. Heterogeneity of the crustal transition is likely associated with changes in frictional and elastic properties that may impact elastic stress accumulation and inhibit southward propagation of megathrust earthquakes. Low connectivity of faults in Cook Strait is consistent with the heterogeneity we observe and may promote complex earthquake triggering by lateral stress loading during earthquakes or slow slip events.

 
more » « less
NSF-PAR ID:
10361099
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Phyllosilicates weaken faults due to the formation of shear fabrics. Although the impacts of clay abundance and fabric on frictional strength, sliding stability, and porosity of faults are well studied, their influence on elastic properties is less known, though they are key factors for fault stiffness. We document the role that fabric and consolidation play in elastic properties and show that smectite content is the most important factor determining whether fabric or porosity controls the elastic response of faults. We conducted a suite of shear experiments on synthetic smectite‐quartz fault gouges (10–100 wt% smectite) and sediment incoming to the Sumatra subduction zone. We monitoredVp,Vs, friction, porosity, shear and bulk moduli. We find that mechanical and elastic properties for gouges with abundant smectite are almost entirely controlled by fabric formation (decreasing mechanical and elastic properties with shear). Though fabrics control the elastic response of smectite‐poor gouges over intermediate shear strains, porosity is the primary control throughout the majority of shearing. Elastic properties vary systematically with smectite content: High smectite gouges have values ofVp ~ 1,300–1,800 m/s,Vs ~ 900–1,100 m/s,K ~ 1–4 GPa, andG ~ 1–2 GPa, and low smectite gouges have values ofVp ~ 2,300–2,500 m/s,Vs ~ 1,200–1,300 m/s,K ~ 5–8 GPa, andG ~ 2.5–3 GPa. We find that, even in smectite‐poor gouges, shear fabric also affects stiffness and elastic moduli, implying that while smectite abundance plays a clear role in controlling gouge properties, other fine‐grained and platy clay minerals may produce similar behavior through their control on the development of fabrics and thin shear surfaces.

     
    more » « less
  2. Abstract

    Earthquakes occur in clusters or sequences that arise from complex triggering mechanisms, but direct measurement of the slow subsurface slip responsible for delayed triggering is rarely possible. We investigate the origins of complexity and its relationship to heterogeneity using an experimental fault with two dominant seismic asperities. The fault is composed of quartz powder, a material common to natural faults, sandwiched between 760 mm long polymer blocks that deform the way 10 meters of rock would behave. We observe periodic repeating earthquakes that transition into aperiodic and complex sequences of fast and slow events. Neighboring earthquakes communicate via migrating slow slip, which resembles creep fronts observed in numerical simulations and on tectonic faults. Utilizing both local stress measurements and numerical simulations, we observe that the speed and strength of creep fronts are highly sensitive to fault stress levels left behind by previous earthquakes, and may serve as on-fault stress meters.

     
    more » « less
  3. Abstract Puerto Rico is a highly seismically active island, where several damaging historical earthquakes have occurred and frequent small events persist. It situates at the boundary between the Caribbean and North American plates, featuring a complex fault system. Here, we investigate the seismotectonic crustal structure of the island by interpreting the 3D compressional-wave velocity VP and compressional- to shear-wave velocity ratio VP/VS models and by analyzing the distribution of the relocated earthquakes. The 3D velocity models are obtained by applying the simul2000 tomographic inversion algorithm based on the phase arrivals recorded by the Puerto Rico seismic network. We find high-VP and low-VP/VS anomalies in the eastern and central province between the Great Northern Puerto Rico fault zone and the Great Southern Puerto Rico fault zone, correlating with the Utuado pluton. Further, there are low-VP anomalies beneath both the Great Southern Puerto Rico fault zone and the South Lajas fault, indicating northerly dipping structures from the southwest to the northwest of the island. We relocate 19,095 earthquakes from May 2017 to April 2021 using the new 3D velocity model and waveform cross-correlation data. The relocated seismicity shows trends along the Investigator fault, the Ponce faults, the Guayanilla rift, and the Punta Montalva fault. The majority of the 2019–2021 Southwestern Puerto Rico earthquakes are associated with the Punta Montalva fault. Earthquakes forming 17° northward-dipping structures at various depths possibly manifest continuation of the Muertos trough, along which the Caribbean plate is being subducted beneath the Puerto Rico microplate. Our results show complex fault geometries of a diffuse fault network, suggesting possible subduction process accommodated by faults within a low-velocity zone. 
    more » « less
  4. Abstract

    Strain partitioning in oblique convergent margins results in margin‐parallel shear in the overriding plate. Margin‐parallel shear is often accommodated by margin‐parallel strike‐slip faults proximal to active volcanic arcs. Along the Nicaraguan segment of the Central American Forearc (CAFA) in the Cocos‐Caribbean plate convergent margin, there are no well‐expressed right‐lateral faults that accommodate CA‐CAFA relative motion. Instead, historical earthquakes and mapped fault orientations indicate that the ∼12 mm/yr of dextral motion is accommodated on arc‐normal, left‐lateral faults (i.e., bookshelf faults). We investigate three upper‐plate earthquakes; the 10 April 2014 (Mw6.1), 15 September 2016 (Mw5.7), and 28 September 2016 (Mw5.5), using Global Position System co‐seismic displacements and relocated earthquake aftershocks. Our analyses of the three earthquakes indicate that the 10 April 2014 earthquake ruptured an unmapped margin‐parallel right‐lateral fault in Lago Xolotlán (Managua) and the September 2016 earthquakes ruptured arc‐normal, left‐lateral and oblique‐slip faults. These earthquakes represent a triggered sequence whereby the 10 April 2014 earthquake promoted failure of the faults that ruptured in September 2016 by imparting a static Coulomb stress change (ΔCFS) of 0.02–0.07 MPa. Likewise, the 15 September 2016, earthquake additionally promoted failure (ΔCFS of 0.08–0.1 MPa) on sub‐parallel faults that ruptured in two subsequent earthquakes. We also present an instance of magma‐tectonic interaction whereby the 10 April 2014 earthquake dilated (10s of μStrain) the shallow magmatic system of Momotombo Volcano, which led to magma injection, ascent, and eruption on 1 December 2015, after ∼100 years of quiescence.

     
    more » « less
  5. Predicting the recurrence times of earthquakes and understanding the physical processes that immediately precede them are two outstanding problems in seismology. Although geodetic measurements record elastic strain accumulation, most faults have recurrence intervals longer than available measurements. Foreshocks provide the principal observations of processes before mainshocks, but variability between sequences limits generalizations of pre-failure behaviour. Here we analyse seismicity and deformation data for highly characteristic caldera collapse earthquakes from 2018 Kīlauea Volcano (Hawaii, USA), with a mean recurrence interval of 1.4 days. These events provide a unique test of stress-induced earthquake recurrence and document processes preceding mainshocks with magnitude greater than five. We show that recurrence intervals are well predicted by stress histories inferred from near-field deformation measurements and that cycle-averaged seismicity reveals a critical phase, minutes before mainshocks, where earthquakes grew larger and seismic moment rate surged dramatically. The average moment rate in the final 15 minutes (0.7% of the mean cycle duration) was 4.75 times the background, a highly significant change. We infer that as the average stress increased, ruptures were more likely to overcome geometric barriers and grow larger, leading to characteristic, whole-fault ruptures. These findings imply that stress heterogeneity influences both earthquake nucleation and growth, including on potentially hazardous tectonic faults. 
    more » « less