We present the third and final data release of the K2 Galactic Archaeology Program (K2 GAP) for Campaigns C1–C8 and C10–C18. We provide asteroseismic radius and mass coefficients,
In this work, we combine information from solar-like oscillations, high-resolution spectroscopy, and Gaia astrometry to derive stellar ages, chemical abundances, and kinematics for a group of seven metal-poor red giants and characterize them in a multidimensional chrono-chemo-dynamical space. Chemical abundance ratios were derived through classical spectroscopic analysis employing 1D LTE atmospheres on Keck/HIRES spectra. Stellar ages, masses, and radii were calculated with grid-based modelling, taking advantage of availability of asteroseismic information from Kepler. The dynamical properties were determined with galpy using Gaia EDR3 astrometric solutions. Our results suggest that underestimated parallax errors make the effect of Gaia parallaxes more important than different choices of model grid or – in the case of stars ascending the red giant branch – mass-loss prescription. Two of the stars in this study are identified as potentially evolved halo blue stragglers. Four objects are likely members of the accreted Milky Way halo, and their possible relationship with known accretion events is discussed.
- Publication Date:
- NSF-PAR ID:
- 10361155
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 510
- Issue:
- 2
- Page Range or eLocation-ID:
- p. 1733-1747
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract κ R andκ M , for ∼19,000 red giant stars, which translate directly to radius and mass given a temperature. As such, K2 GAP DR3 represents the largest asteroseismic sample in the literature to date. K2 GAP DR3 stellar parameters are calibrated to be on an absolute parallactic scale based on Gaia DR2, with red giant branch and red clump evolutionary state classifications provided via a machine-learning approach. Combining these stellar parameters with GALAH DR3 spectroscopy, we determine asteroseismic ages with precisions of ∼20%–30% and compare age-abundance relations to Galactic chemical evolution models among both low- and high-α populations forα , light, iron-peak, and neutron-capture elements. We confirm recent indications in the literature of both increased Ba production at late Galactic times as well as significant contributions tor -process enrichment from prompt sources associated with, e.g., core-collapse supernovae. With an eye toward other Galactic archeology applications, we characterize K2 GAP DR3 uncertainties and completeness using injection tests, suggesting that K2 GAP DR3 is largely unbiased in mass/age, with uncertainties of 2.9% (stat.) ± 0.1% (syst.) and 6.7% (stat.) ±more » -
Abstract We find that the chemical abundances and dynamics of APOGEE and GALAH stars in the local stellar halo are inconsistent with a scenario in which the inner halo is primarily composed of debris from a single massive, ancient merger event, as has been proposed to explain the Gaia-Enceladus/Gaia Sausage (GSE) structure. The data contain trends of chemical composition with energy that are opposite to expectations for a single massive, ancient merger event, and multiple chemical evolution paths with distinct dynamics are present. We use a Bayesian Gaussian mixture model regression algorithm to characterize the local stellar halo, and find that the data are fit best by a model with four components. We interpret these components as the Virgo Radial Merger (VRM), Cronus, Nereus, and Thamnos; however, Nereus and Thamnos likely represent more than one accretion event because the chemical abundance distributions of their member stars contain many peaks. Although the Cronus and Thamnos components have different dynamics, their chemical abundances suggest they may be related. We show that the distinct low- and high-
α halo populations from Nissen & Schuster are explained by VRM and Cronus stars, as well as some in situ stars. Because the local stellar halo contains multiple substructures, different popularmore » -
ABSTRACT We present a detailed near-infrared chemical abundance analysis of 10 red giant members of the Galactic open cluster NGC 752. High-resolution (R ≃ 45000) near-infrared spectral data were gathered with the Immersion Grating Infrared Spectrograph, providing simultaneous coverage of the complete H and K bands. We derived the abundances of H-burning (C, N, O), α (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni), and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 752 for the first time. Our analysis yields solar-metallicity and solar abundance ratios for almost all of the elements heavier than the CNO group in NGC 752. O and N abundances were measured from a number of OH and CN features in the H band, and C abundances were determined mainly from CO molecular lines in the K band. High-excitation $\rm{C\,\small {I}}$ lines present in both near-infrared and optical spectra were also included in the C abundance determinations. Carbon isotopic ratios were derived from the R-branch band heads of first overtone (2−0) and (3−1) 12CO and (2−0) 13CO lines near 23 440 Å and (3−1) 13CO lines at about 23 730 Å. The CNOmore »
-
Abstract We present measurements of [Fe/H] and [
α /Fe] for 128 individual red giant branch stars (RGB) in the stellar halo of M31, including its Giant Stellar Stream (GSS), obtained using spectral synthesis of low- and medium-resolution Keck/DEIMOS spectroscopy ( and 6000, respectively). We observed four fields in M31's stellar halo (at projected radii of 9, 18, 23, and 31 kpc), as well as two fields in the GSS (at 33 kpc). In combination with existing literature measurements, we have increased the sample size of [Fe/H] and [α /Fe] measurements from 101 to a total of 229 individual M31 RGB stars. From this sample, we investigate the chemical abundance properties of M31's inner halo, finding and . Between 8 and 34 kpc, the inner halo has a steep [Fe/H] gradient (−0.025 ± 0.002 dex kpc−1) and negligible [α /Fe] gradient, where substructure in the inner halo is systematically more metal-rich than the smooth component of the halo at a given projected distance. Although the chemical abundances of the inner stellar halo are largely inconsistent with that of present-day dwarf spheroidal (dSph) satellite galaxies of M31, we identified 22 RGB stars kinematically associated with the smooth component of the stellar halomore » -
ABSTRACT Globular clusters are prone to lose stars while moving around the Milky Way. These stars escape the clusters and are distributed throughout extended envelopes or tidal tails. However, such extra-tidal structures are not observed in all globular clusters, and yet there are no structural or dynamical parameters that can predict their presence or absence. NGC 6864 is an outer halo globular cluster with reported no observed tidal tails. We used Dark Energy Camera photometry reaching ∼4 mag underneath its main-sequence turnoff to confidently detect an extra-tidal envelope, and stellar debris spread across the cluster outskirts. These features emerged once robust field star filtering techniques were applied to the fainter end of the observed cluster main sequence. NGC 6864 is associated to the Gaia-Enceladus dwarf galaxy, among others 28 globular clusters. Up-to-date, nearly 64${{\ \rm per\,cent}}$ of them have been targeted looking for tidal tails and most of them have been confirmed to exhibit tidal tails. Thus, the present outcomes allow us to speculate on the possibility that Gaia-Enceladus globular clusters share a common pattern of mass loss by tidal disruption.