skip to main content


Title: Physical Properties of Massive Compact Starburst Galaxies with Extreme Outflows
Abstract

We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive (M*∼ 1011M), compact starburst galaxies atz= 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean ΣSFR∼ 2000Myr−1kpc−2) and powerful galactic outflows (maximum speedsv98∼ 1000–3000 km s−1). Our unique data set includes an ensemble of both emission ([Oii]λλ3726,3729, Hβ, [Oiii]λλ4959,5007, Hα, [Nii]λλ6549,6585, and [Sii]λλ6716,6731) and absorption (Mgiiλλ2796,2803, and Feiiλ2586) lines that allow us to investigate the kinematics of the cool gas phase (T∼ 104K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (medianne∼ 530 cm−3), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [Sii]nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.

 
more » « less
Award ID(s):
1813365 1813702 1813299
NSF-PAR ID:
10361162
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
923
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 275
Size(s):
["Article No. 275"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z< 0.20 with stellar masses 7.4 ≤ logM*/M≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN(Caii) > 1012.5cm−2(N(Nai) > 1012.0cm−2) occur with an incidencefC(Caii) = 0.63+0.10−0.11(fC(Nai) = 0.57+0.10−0.11). We find no evidence for a dependence offCor the rest-frame equivalent widthsWr(CaiiK) orWr(Nai5891) onRorM*. Instead,Wr(CaiiK) is correlated with local SFR at >3σsignificance, suggesting that Caiitraces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR> 5 kpc. Finally, we assess the relationship between dust reddening andWr(CaiiK) (Wr(Nai5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE(B−V)-Wrrelations at >3σsignificance.

     
    more » « less
  2. Abstract

    We present results on the properties of extreme gas outflows in massive (M*∼ 1011M), compact, starburst (star formation rate, SFR∼ 200Myr−1) galaxies atz= 0.4–0.7 with very high star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). Using optical Keck/HIRES spectroscopy of 14 HizEA starburst galaxies, we identify outflows with maximum velocities of 820–2860 km s−1. High-resolution spectroscopy allows us to measure precise column densities and covering fractions as a function of outflow velocity and characterize the kinematics and structure of the cool gas outflow phase (T∼ 104K). We find substantial variation in the absorption profiles, which likely reflects the complex morphology of inhomogeneously distributed, clumpy gas and the intricacy of the turbulent mixing layers between the cold and hot outflow phases. There is not a straightforward correlation between the bursts in the galaxies’ star formation histories and their wind absorption line profiles, as might naively be expected for starburst-driven winds. The lack of strong Mgiiabsorption at the systemic velocity is likely an orientation effect, where the observations are down the axis of a blowout. We infer high mass outflow rates of ∼50–2200Myr−1, assuming a fiducial outflow size of 5 kpc, and mass loading factors ofη∼ 5 for most of the sample. While these values have high uncertainties, they suggest that starburst galaxies are capable of ejecting very large amounts of cool gas that will substantially impact their future evolution.

     
    more » « less
  3. Abstract

    The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6μm region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii]λ5.34μm and [Arii]λ6.99μm lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ6.91μm, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii] ∼ 180 pc from the AGN that also show highL(H2)/L(PAH) andL([Feii])/L(Pfα) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into the dense interstellar medium between the nucleus and the starburst ring. These resolved mid-infrared observations of the nuclear gas dynamics demonstrate the power of JWST and its high-sensitivity integral-field spectroscopic capability to resolve feedback processes around supermassive black holes in the dusty cores of nearby luminous infrared galaxies.

     
    more » « less
  4. Abstract

    M82 is an archetypal starburst galaxy in the local Universe. The central burst of star formation, thought to be triggered by M82's interaction with other members in the M81 group, is driving a multiphase galaxy-scale wind away from the plane of the disk that has been studied across the electromagnetic spectrum. Here, we present new velocity-resolved observations of the [Cii] 158μm line in the central disk and the southern outflow of M82 using the upGREAT instrument on board SOFIA. We also report the first detections of velocity-resolved (ΔV= 10 km s−1) [Cii] emission in the outflow of M82 at projected distances of ≈1–2 kpc south of the galaxy center. We compare the [Cii] line profiles to observations of CO and Hiand find that likely the majority (>55%) of the [Cii] emission in the outflow is associated with the neutral atomic medium. We find that the fraction of [Cii] actually outflowing from M82 is small compared to the bulk gas outside the midplane (which may be in a halo or tidal streamers), which has important implications for observations of [Cii] outflows at higher redshift. Finally, by comparing the observed ratio of the [Cii] and CO intensities to models of photodissociation regions, we estimate that the far-ultraviolet (FUV) radiation field in the disk is ∼103.5G0, in agreement with previous estimates. In the outflow, however, the FUV radiation field is 2–3 orders of magnitudes lower, which may explain the high fraction of [Cii] arising from the neutral medium in the wind.

     
    more » « less
  5. Abstract

    We present the first results from Chemical Evolution Constrained Using Ionized Lines in Interstellar Aurorae (CECILIA), a Cycle 1 JWST NIRSpec/MSA program that uses ultra-deep ∼30 hr G235M/F170LP observations to target multiple electron temperature-sensitive auroral lines in the spectra of 33 galaxies atz∼ 1–3. Using a subset of 23 galaxies, we construct two ∼600 object-hour composite spectra, both with and without the stellar continuum, and use these to investigate the characteristic rest-optical (λrest≈ 5700–8500 Å) spectrum of star-forming galaxies at the peak epoch of cosmic star formation. Emission lines of eight different elements (H, He, N, O, Si, S, Ar, and Ni) are detected, with most of these features observed to be ≲3% the strength of Hα. We report the characteristic strength of three auroral features ([Nii]λ5756, [Siii]λ6313, and [Oii]λλ7322, 7332), as well as other semi-strong and faint emission lines, including forbidden [Niii]λλ7380, 7414 and permitted Oiλ8449, some of which have never before been observed outside of the local Universe. Using these measurements, we findTe[Nii] = 13,630 ± 2540 K, representing the first measurement of electron temperature using [Nii] in the high-redshift Universe. We also see evidence for broad line emission with a FWHM of536167+45km s−1; the broad component of Hαis 6.01%–28.31% the strength of the narrow component and likely arises from star-formation-driven outflows. Finally, we briefly comment on the feasibility of obtaining large samples of faint emission lines using JWST in the future.

     
    more » « less