skip to main content

Title: A storyline view of the projected role of remote drivers on summer air stagnation in Europe and the United States

Storylines of atmospheric circulation change, or physically self-consistent narratives of plausible future events, have recently been proposed as a non-probabilistic means to represent uncertainties in climate change projections. Here, we apply the storyline approach to 21st century projections of summer air stagnation over Europe and the United States. We use a Climate Model Intercomparison Project Phase 6 (CMIP6) ensemble to generate stagnation storylines based on the forced response of three remote drivers of the Northern Hemisphere mid-latitude atmospheric circulation: North Atlantic warming, North Pacific warming, and tropical versus Arctic warming. Under a high radiative forcing scenario (SSP5-8.5), models consistently project increases in stagnation over Europe and the U.S., but the magnitude and spatial distribution of changes vary substantially across CMIP6 ensemble members, suggesting that future projections are not well-constrained when using the ensemble mean alone. We find that the diversity of projected stagnation changes depends on the forced response of remote drivers in individual models. This is especially true in Europe, where differences of ∼2 summer stagnant days per degree of global warming are found amongst the different storyline combinations. For example, the greatest projected increase in stagnation for most European regions leads to the smallest increase in stagnation for southwestern Europe; i.e. limited North Atlantic warming combined with near-equitable tropical and Arctic warming. In the U.S., only the atmosphere over the northern Rocky Mountain states demonstrates comparable stagnation projection uncertainty, due to opposite influences of remote drivers on the meteorological conditions that lead to stagnation.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Page Range / eLocation ID:
Article No. 014026
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate model projections of atmospheric circulation patterns, their frequency, and associated temperature and precipitation anomalies under a high-end global warming scenario are assessed over the Pacific Northwest of North America for the final three decades of the twenty-first century. Model simulations are from phase 6 of the Coupled Model Intercomparison Project (CMIP6) and circulation patterns are identified using the self-organizing maps (SOMs) approach, applied to 500-hPa geopotential height (Z500) anomalies. Overall, the range of projected circulation patterns is similar to that in the current climate, especially in winter, whereas in summer the models project a general reduction in the magnitude of Z500 anomalies. Significant changes in pattern frequencies are also projected in summer, with an overall decrease in the frequency of patterns with large Z500 anomalies. In winter, patterns historically associated with anomalously cold weather in northern latitudes are projected to warm the most, and in summer the largest temperature increases are projected over inland areas. Precipitation is found to increase across all seasons and most SOM patterns. However, some summer patterns that are associated with above-average precipitation in the current climate are projected to become significantly drier by the end of the century.

    Significance Statement

    This paper uses a novel method to analyze projections of large-scale atmospheric circulation over the Pacific Northwest of North America, reducing the uncertainty of changes to the circulation patterns over the region under a high-emissions scenario of global warming.

    more » « less
  2. Abstract

    Biomass burning aerosol (BBA) emissions in the Coupled Model Intercomparison Project phase 6 (CMIP6) historical forcing fields have enhanced temporal variability during the years 1997–2014 compared to earlier periods. Recent studies document that the corresponding inhomogeneous shortwave forcing over this period can cause changes in clouds, permafrost, and soil moisture, which contribute to a net terrestrial Northern Hemisphere warming relative to earlier periods. Here, we investigate the ocean response to the hemispherically asymmetric warming, using a 100-member ensemble of the Community Earth System Model version 2 Large Ensemble forced by two different BBA emissions (CMIP6 default and temporally smoothed over 1990–2020). Differences between the two subensemble means show that ocean temperature anomalies occur during periods of high BBA variability and subsequently persist over multiple decades. In the North Atlantic, surface warming is efficiently compensated for by decreased northward oceanic heat transport due to a slowdown of the Atlantic meridional overturning circulation. In the North Pacific, surface warming is compensated for by an anomalous cross-equatorial cell (CEC) that reduces northward oceanic heat transport. The heat that converges in the South Pacific through the anomalous CEC is shunted into the subsurface and contributes to formation of long-lasting ocean temperature anomalies. The anomalous CEC is maintained through latitude-dependent contributions from narrow western boundary currents and basinwide near-surface Ekman transport. These results indicate that interannual variability in forcing fields may significantly change the background climate state over long time scales, presenting a potential uncertainty in CMIP6-class climate projections forced without interannual variability.

    more » « less
  3. Abstract As the Arctic continues to warm faster than the rest of the planet, evidence mounts that the region is experiencing unprecedented environmental change. The hydrological cycle is projected to intensify throughout the twenty-first century, with increased evaporation from expanding open water areas and more precipitation. The latest projections from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) point to more rapid Arctic warming and sea-ice loss by the year 2100 than in previous projections, and consequently, larger and faster changes in the hydrological cycle. Arctic precipitation (rainfall) increases more rapidly in CMIP6 than in CMIP5 due to greater global warming and poleward moisture transport, greater Arctic amplification and sea-ice loss and increased sensitivity of precipitation to Arctic warming. The transition from a snow- to rain-dominated Arctic in the summer and autumn is projected to occur decades earlier and at a lower level of global warming, potentially under 1.5 °C, with profound climatic, ecosystem and socio-economic impacts. 
    more » « less
  4. Abstract

    The Community Earth System Model 2 (CESM2) is the latest Earth System Model developed by the National Center for Atmospheric Research in collaboration with the university community and is significantly advanced in most components compared to its predecessor (CESM1). Here, CESM2's representation of the large‐scale atmospheric circulation and its variability is assessed. Further context is providedthrough comparison to the CESM1 large ensemble and other models from the Coupled Model Intercomparison Project (CMIP5 and CMIP6). This includes an assessment of the representation of jet streams and storm tracks, stationary waves, the global divergent circulation, the annular modes, the North Atlantic Oscillation, and blocking. Compared to CESM1, CESM2 is substantially improved in the representation of the storm tracks, Northern Hemisphere (NH) stationary waves, NH winter blocking and the global divergent circulation. It ranks within the top 10% of CMIP class models in many of these features. Some features of the Southern Hemisphere (SH) circulation have degraded, such as the SH jet strength, stationary waves, and blocking, although the SH jet stream is placed at approximately the correct location. This analysis also highlights systematic deficiencies in these features across the new CMIP6 archive, such as the continued tendency for the SH jet stream to be placed too far equatorward, the North Atlantic westerlies to be too strong over Europe, the storm tracks as measured by low‐level meridional wind variance to be too weak and a lack of blocking in the North Atlantic sector.

    more » « less
  5. Peter L. Langen (Ed.)
    Arctic Amplification is a fundamental feature of past, present, and modelled future climate. However, the causes of this “amplification” within Earth’s climate system are not fully understood. To date, warming in the Arctic has been most pronounced in autumn and winter seasons, with this trend predicted to continue based on model projections of future climate. Nevertheless, the mechanisms by which this will take place are numerous, interconnected. and complex. Will future Arctic Amplification be primarily driven by local, within-Arctic processes, or will external forces play a greater role in contributing to changing climate in this region? Motivated by this uncertainty in future Arctic climate, this review seeks to evaluate several of the key atmospheric circulation processes important to the ongoing discussion of Arctic amplification, focusing primarily on processes in the troposphere. Both local and remote drivers of Arctic amplification are considered, with specific focus given to high-latitude atmospheric blocking, poleward moisture transport, and tropical-high latitude subseasonal teleconnections. Impacts of circulation variability and moisture transport on sea ice, ice sheet surface mass balance, snow cover, and other surface cryospheric variables are reviewed and discussed. The future evolution of Arctic amplification is discussed in terms of projected future trends in atmospheric blocking and moisture transport and their coupling with the cryosphere. As high-latitude atmospheric circulation is strongly influenced by lower-latitude processes, the future state of tropical-to-Arctic teleconnections is also considered.

    more » « less