skip to main content


Title: Water availability affects the relationship between pollen intensity and seed production
Abstract

Seed production can be affected by water availability and also depend on the amount (pollen intensity) and quality of pollen deposited. The way pollen receipt on the stigma translates into seeds produced follows that of a saturating dose–response. Not only can water availability and pollen intensity each influence seed production, these factors could interact in their effects on seed production. Changes to the relationship between seed production and pollen intensity can in turn influence pollinator effectiveness and pollinator-mediated selection. We asked how water availability affected indices of plant fitness (seed set, fruit set and seed mass) and the relationship between pollen intensity and seed production in Phacelia parryi. We conducted a greenhouse experiment where we manipulated water availability (either high- or low-water) to pollen recipient plants and hand-pollinated each plant with a range of pollen intensities. We conducted 703 hand-pollinations on 30 plants. For each hand-pollinated flower we measured pollen deposited, seed production and seed mass. We then generated a piecewise regression of the relationship between pollen intensity and seed production, and determined average effects of water on plant fitness measures. This experiment was paired with a field observational study aimed to document natural variation in pollen deposition. Average seed production per fruit was 21 % higher in the high-watered plants. The relationship between pollen intensity and seed production differed between the two water treatments. Plants under high-water exhibited a wider range in which pollen deposition increased seed production. Average natural pollen intensities fell within different regions of the piecewise regression for low- and high-water plants. Water availability can alter the efficiency by which pollen received is translated into seeds produced. Our greenhouse data suggest that only under certain pollen intensity environments will water availability affect how pollen received is translated into seeds produced.

 
more » « less
NSF-PAR ID:
10361199
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
AoB PLANTS
Volume:
13
Issue:
6
ISSN:
2041-2851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In habitats where resource availability declines during the growing season,selection may favor early‐flowering individuals. Under such ephemerally favorable conditions, late‐blooming species (and individuals) may be particularly vulnerable to resource limitation of seed production. In California, a region prone to seasonal drought, members of the annual genusClarkiaare among the last to flower in the spring. We compared pollen limitation (PL) of seed set and outcrossing rates between early‐ and late‐flowering individuals in two mixed‐matingClarkiataxa to detect whether flowering time is associated with changes in seed set due to resource depletion,PL, or increased selfing. In 2008–2010, we hand‐pollinated one flower on a total of 1855 individual plants either Early (near the onset of flowering) or Late (near the end of flowering) in the flowering season and compared seed set to adjacent, open‐pollinated flowers on the same stem. To assess the contribution of pollen quality to reproduction, we first (2008) used allozymes to estimate outcrossing rates of seeds produced by Early and Late open‐pollinated flowers. Second (2009), we conducted an anther‐removal experiment to estimate self‐pollen deposition. Seed set inClarkia unguiculatawas not pollen‐limited.Clarkia xantianassp. xantianawas pollen‐limited in 2008 and 2010, but not 2009.PLdid not differ between Early and Late treatments. In both taxa, seed set of Early flowers was greater than Late flowers, but not due toPLin the latter. Reproduction was generally pollinator‐dependent. Most pollen deposition was xenogamous, and outcrossing rates were >0.7 – and similar between Early and Late periods. These results suggest that pollen receipt and pollen quality remain seasonally consistent. By contrast, the resources necessary to provision seeds decline, reducing the fitness benefits associated with resource allocation to ovules.

     
    more » « less
  2. Premise

    Outcrossing species depend on pollen from conspecific individuals that may not be exposed to the same abiotic conditions as maternal plants. Additionally, many flowers receive heterospecific pollen, which can also influence seed production. Studies aimed to understand how abiotic conditions influence seed production tend to focus on maternal conditions and leave unexplored the effect of abiotic conditions experienced by pollen donors. We tested how water availability to pollen donors, both conspecific and heterospecific, influenced the seed production of recipient plants exposed to different water availability regimes.

    Methods

    In a greenhouse setting we manipulated the water availability (low‐ or high‐water treatment) to potted recipient plants (Phacelia parryi), to conspecific pollen donors, and to heterospecific pollen donors (Brassica nigra). We hand pollinated recipient plants with different pollen mixes that represented all combinations of conspecific pollen mixed with heterospecific pollen. From these hand pollinations we determined the amount of pollen that was transferred, pollen volume, pollen shape, and seed production.

    Results

    Higher water availability to conspecific pollen donors led to higher seed production. Under low water availability to heterospecific pollen donors, seed production was unaffected by recipient or conspecific pollen donor treatment. Under high water availability to heterospecific pollen donors, seed production was highest when conspecific pollen donors and pollen recipients also received the high‐water treatment.

    Conclusions

    Environmental conditions of pollen donors can influence the seed production of maternal plants. These results illustrate potential impacts of environmental heterogeneity on post‐pollination events that lead to seed production and thus impact a pollinator's contribution to plant fitness.

     
    more » « less
  3. Abstract Premise Many tropical plants are bat‐pollinated, but these mammals often carry copious, multispecific pollen loads making bat‐pollinated plants susceptible to heterospecific pollen deposition and reproductive interference. We investigated pollen transfer between sympatric bat‐pollinated Burmeistera species and their response to heterospecific pollen deposition from each other. Methods We quantified conspecific and heterospecific pollen deposition for two populations of B. ceratocarpa , a recipient species in heterospecific pollen transfer interactions, that co‐occur with different donor relatives ( B. borjensis and B. glabrata ). We then used a cross‐pollination scheme using pollen mixtures to assess the species' responses to heterospecific pollen deposition in terms of fruit abortion and seed production. Results Burmeistera ceratocarpa received significantly more heterospecific pollen from its relatives at both sites than its own pollen was deposited on its relatives. However, heterospecific pollen deposition only affected seed production by B. borjensis and B. glabrata , but not by B. ceratocarpa , suggesting that early acting post‐pollination barriers buffer the latter against reproductive interference. Crosses between sympatric and allopatric populations suggest that the study species are fully isolated in sympatry, while isolation between allopatric populations is strong but incomplete. Conclusions We did not observe evidence of reproductive interference among our study species, because either heterospecific pollen deposition did not affect their seed production ( B. ceratocarpa ) or they receive heterospecific pollen only rarely ( B. borjensis and B. glabrata ). Frequent heterospecific pollen deposition might favor the evolution of barriers against foreign pollen (as in B. ceratocarpa ) that alleviate the competitive costs of sharing low fidelity pollinators with co‐occurring species. 
    more » « less
  4. Arceo-Gómez, Gerardo (Ed.)
    Abstract Researchers have long assumed that plant spatial location influences plant reproductive success and pollinator foraging behaviour. For example, many flowering plant populations have small, linear or irregular shapes that increase the proportion of plants on the edge, which may reduce mating opportunities through both male and female function. Additionally, plants that rely on pollinators may be particularly vulnerable to edge effects if those pollinators exhibit restricted foraging and pollen carryover is limited. To explore the effects of spatial location (edge vs. interior) on siring success, seed production, pollinator foraging patterns and pollen-mediated gene dispersal, we established a square experimental array of 49 Mimulus ringens (monkeyflower) plants. We observed foraging patterns of pollinating bumblebees and used paternity analysis to quantify male and female reproductive success and mate diversity for plants on the edge versus interior. We found no significant differences between edge and interior plants in the number of seeds sired, mothered or the number of sires per fruit. However, we found strong differences in pollinator behaviour based on plant location, including 15 % lower per flower visitation rates and substantially longer interplant moves for edge plants. This translated into 40 % greater pollen-mediated gene dispersal for edge than for interior plants. Overall, our results suggest that edge effects are not as strong as is commonly assumed, and that different plant reproduction parameters respond to spatial location independently. 
    more » « less
  5. Premise

    Variation in pollinator effectiveness may contribute to pollen limitation in fragmented plant populations. In plants with multiovulate ovaries, the number of conspecific pollen grains per stigma often predicts seed set and is used to quantify pollinator effectiveness. In the Asteraceae, however, florets are uniovulate, which suggests that the total amount of pollen deposited per floret may not measure pollinator effectiveness. We examined two aspects of pollinator effectiveness—effective pollen deposition and effective pollen movement—for insects visitingEchinacea angustifolia, a composite that is pollen limited in small, isolated populations.

    Methods

    We filmed insect visits toEchinaceain two prairie restorations and used these videos to quantify behavior that might predict effectiveness. To quantify effective pollen deposition, we used the number of styles shriveled per visit. To quantify effective pollen movement, we conducted paternity analysis on a subset of offspring and measured the pollen movement distance between mates.

    Results

    Effective pollen deposition varied among taxa.Andrena helianthiformis, a Heliantheae oligolege, was the most effective taxon, shriveling more than twice the proportion of styles as all other visitors. Differences in visitor behavior on a flowering head did not explain variation in effective pollen deposition, nor did flowering phenology. On average, visitors moved pollen 16 m between plants, and this distance did not vary among taxa.

    Conclusions

    Andrena helianthiformisis an important pollinator ofEchinacea. Variation in reproductive fitness ofEchinaceain fragmented habitat may result, in part, from the abundance of this species.

     
    more » « less