2D hybrid perovskites are attractive for optoelectronic devices. In thin films, the color of optical emission and the texture of crystalline domains are often difficult to control. Here, a method for extinguishing or enhancing different emission features is demonstrated for the family of 2D Ruddlesden–Popper perovskites (EA1−
We have investigated the collective electronic and magnetic orderings of a series of La1−
- Publication Date:
- NSF-PAR ID:
- 10361216
- Journal Name:
- Materials Research Express
- Volume:
- 9
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. 016101
- ISSN:
- 2053-1591
- Publisher:
- IOP Publishing
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x FAx )4Pb3Br10(EA = ethylammonium, FA = formamidinium). When grown from aqueous hydrobromic acid, crystals of (EA1−x FAx )4Pb3Br10retain all the emission features of their parent compound, (EA)4Pb3Br10. Surprisingly, when grown from dimethylformamide (DMF), an emission feature, likely self‐trapped exciton (STE), near 2.7 eV is missing. Extinction of this feature is correlated with DMF being incorporated between the 2D Pb‐Br sheets, forming (EA1−x FAx )4Pb3Br10∙(DMF)y . Without FA, films grown from DMF form (EA)4Pb3Br10, retain little solvent, and have strong emission near 2.7 eV. Slowing the kinetics of film growth strengthens a different emission feature, likely a different type of STE, which is much broader and present in all compositions. Films of (EA1−x FAx )4Pb3Br10∙(DMF)y have large, micron‐sized domains and homogeneous orientation of the semiconducting sheets, resulting in low electronic disorder near the absorption edge. The ability to selectively strengthen or extinguish different emission features in films of (EA1−x FAx )4Pb3Br10∙(DMF)y reveals a pathway to tune the emission color in these compounds. -
Abstract The present paper reports the multifunctional properties of lead‐free BiFeO3–La (BFO–La) thin films. The structural, microstructural, and optical properties have been investigated as a function of the lanthanum doping concentration. The structural properties at room temperature showed the formation of the perovskite structure, thus suggesting the high quality of the obtained thin film compositions. Raman spectroscopy analysis revealed a slight variation in both the peak position and absolute intensity for the Raman active modes, as lanthanum content increases in BiFeO3–La. Crystallized thin films with well‐defined grains as well as crack‐free surfaces have been obtained, for all the studied compositions, as inferred from atomic force microscopy images. The optical properties have been measured, and the values for the direct bandgap was significantly lower than those reported for other BFO‐based systems, being the lowest ∼1.87 eV for the Bi0.90La0.10FeO3composition. Results revealed a noteworthy effect of the defect concentrations induced by the lanthanum doping on the long‐range crystallinity and directly affecting the polarizability of the A–O bond as well as the Fe–O and Fe–O–Fe bond lengths in the perovskite structure. The enhanced optical absorption properties registered for the Bi1–
x Lax FeO3(x = 0–20) compositions make these perovskite multiferroic thin films as a potential candidate material formore » -
Abstract The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−
x Srx HfO3system. The resulting (240)‐oriented PbHfO3(Pba 2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP 4mm phase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−x Srx HfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (E B) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (U r) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofE B = 5.12 ± 0.5 MV cm−1,U r = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides. -
Growths of monoclinic (Al
x Ga1−x )2O3thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(Alx Ga1−x )2O3thin films on (010), (100), and (01) β‐Ga2O3substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(Alx Ga1−x )2O3films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (Alx Ga1−x )2O3films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and (01) β‐Ga2O3substrates, respectively. Beyond 29% of Al incorporation, the (010) (Alx Ga1−x )2O3films exhibit β‐ to γ‐phase segregation. β‐(Alx Ga1−x )2O3films grown on (01) β‐Ga2O3show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (Alx Ga1−x )2O3grown on (100) Ga2O3are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(Alx Ga1−x )2O3films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices. -
The current understanding of the crystallization, morphology evolution, and phase stability of wide‐bandgap hybrid perovskite thin films is very limited, as much of the community's focus is on lower bandgap systems. Herein, the crystallization behavior and film formation of a wide and tunable bandgap MAPbBr3
− x Clx system are investigated, and its formation and phase stability are contrasted to the classical MAPbI3− x Brx case. A multiprobe in situ characterization approach consisting of synchrotron‐based grazing incidence wide‐angle X‐ray scattering and laboratory‐based time‐resolved UV–Vis absorbance measurements is utilized to show that all wide‐bandgap perovskite compositions of MAPbBr3− x Clx studied (0 <x < 3) crystallize the same way: the perovskite phase forms directly from the colloidal sol state and forms a solid film in the cubic structure. This results in significantly improved alloying and phase stability of these compounds compared with MAPbI3− x Brx systems. The phase transformation pathway is direct and excludes solvated phases, in contrast to methylammonium lead iodide (MAPbI3). The films benefit from antisolvent dripping to overcome the formation of discontinuous layers and enable device integration. Pin‐hole‐free MAPbBr3− x Clx hybrid perovskite thin films with a tunable bandgap are, thus, integrated into working single‐junction solar cell devices and achieve a tunable open‐circuit voltage as high as 1.6 V.