skip to main content

Title: Doping dependent electronic and magnetic ordering in mixed-valent La 1−x Sr x MnO 3 thin films

We have investigated the collective electronic and magnetic orderings of a series of La1−xSrxMnO3thin films grown epitaxially strained to (001) oriented strontium titanate substrates as a function of doping,x, for 0 ≤x≤ 0.4. We find that the ground states of these crystalline thin films are, in general, consistent with that observed in bulk crystals and thin film samples synthesized under a multitude of techniques. Our systematic study, however, reveal subtle features in the temperature dependent electronic transport and magnetization measurements, which presumably arise due to Jahn-Teller type distortions in the lattice for particular doping levels. For the parent compound LaMnO3(x= 0), we report evidence of a strain-induced ferromagnetic ordering in contrast to the antiferromagnetic ground state found in bulk crystals.

; ; ; ; ;
Publication Date:
Journal Name:
Materials Research Express
Page Range or eLocation-ID:
Article No. 016101
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    2D hybrid perovskites are attractive for optoelectronic devices. In thin films, the color of optical emission and the texture of crystalline domains are often difficult to control. Here, a method for extinguishing or enhancing different emission features is demonstrated for the family of 2D Ruddlesden–Popper perovskites (EA1−xFAx)4Pb3Br10(EA = ethylammonium, FA = formamidinium). When grown from aqueous hydrobromic acid, crystals of (EA1−xFAx)4Pb3Br10retain all the emission features of their parent compound, (EA)4Pb3Br10. Surprisingly, when grown from dimethylformamide (DMF), an emission feature, likely self‐trapped exciton (STE), near 2.7 eV is missing. Extinction of this feature is correlated with DMF being incorporated between the 2D Pb‐Br sheets, forming (EA1−xFAx)4Pb3Br10∙(DMF)y. Without FA, films grown from DMF form (EA)4Pb3Br10, retain little solvent, and have strong emission near 2.7 eV. Slowing the kinetics of film growth strengthens a different emission feature, likely a different type of STE, which is much broader and present in all compositions. Films of (EA1−xFAx)4Pb3Br10∙(DMF)yhave large, micron‐sized domains and homogeneous orientation of the semiconducting sheets, resulting in low electronic disorder near the absorption edge. The ability to selectively strengthen or extinguish different emission features in films of (EA1−xFAx)4Pb3Br10∙(DMF)yreveals a pathway to tune the emission color in these compounds.

  2. Abstract

    The present paper reports the multifunctional properties of lead‐free BiFeO3–La (BFO–La) thin films. The structural, microstructural, and optical properties have been investigated as a function of the lanthanum doping concentration. The structural properties at room temperature showed the formation of the perovskite structure, thus suggesting the high quality of the obtained thin film compositions. Raman spectroscopy analysis revealed a slight variation in both the peak position and absolute intensity for the Raman active modes, as lanthanum content increases in BiFeO3–La. Crystallized thin films with well‐defined grains as well as crack‐free surfaces have been obtained, for all the studied compositions, as inferred from atomic force microscopy images. The optical properties have been measured, and the values for the direct bandgap was significantly lower than those reported for other BFO‐based systems, being the lowest ∼1.87 eV for the Bi0.90La0.10FeO3composition. Results revealed a noteworthy effect of the defect concentrations induced by the lanthanum doping on the long‐range crystallinity and directly affecting the polarizability of the A–O bond as well as the Fe–O and Fe–O–Fe bond lengths in the perovskite structure. The enhanced optical absorption properties registered for the Bi1–xLaxFeO3(x= 0–20) compositions make these perovskite multiferroic thin films as a potential candidate material formore »the high‐performance photovoltaic device applications.

    « less
  3. Abstract

    The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−xSrxHfO3system. The resulting (240)‐oriented PbHfO3(Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP4mmphase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−xSrxHfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (EB) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofEB = 5.12 ± 0.5 MV cm−1,Ur = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides.

  4. Growths of monoclinic (AlxGa1−x)2O3thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3thin films on (010), (100), and (01) β‐Ga2O3substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and (01) β‐Ga2O3substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3films grown on (01) β‐Ga2O3show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3grown on (100) Ga2O3are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.