skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parasitism of Neoconocephalus katydids by the parasitoid fly, Ormia lineifrons
Abstract Mating signals of insects do not only attract their intended receivers but also eavesdropping parasites and/or predators. As a result, an arms race between the host or prey and the eavesdropper ensues, propelling their co‐evolution and potentially contributing to their diversification. Here, we investigate the species interaction of the flyOrmia lineifronsthat usesNeoconocephaluskatydids as hosts for its lethal larvae. We surveyed the host use ofO. lineifronsover a 2‐year period in Kentucky and determined which species were used as hosts, the parasitism rate of each katydid host, and how many generations per year the fly displays. Four of the six surveyedNeoconocephalusspecies were parasitized and killed (Neoconocephalus triops,Neoconocephalus velox,Neoconocephalus robustus,Neoconocephalus nebrascensis) byO. lineifrons. Three of these katydid species were previously not known to be hosts ofO. lineifrons. Two of the six species were not parasitized in either year (Neoconocephalus bivocatus,Neoconocephalus retusus) even thoughO. lineifronswas active when they called. The parasitism rate of each host peaked between 38% and 100% across years. The fly had three distinct generations per year, and each generation used different katydid species as hosts. We discuss the importance of the synchronization of the three fly generations with their hosts as well as potential counteradaptations of the hosts. These semi‐independent arms races could provide valuable insights in the diversification of the hosts and their parasitoid.  more » « less
Award ID(s):
1755118
PAR ID:
10361223
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ethology
Volume:
128
Issue:
2
ISSN:
0179-1613
Page Range / eLocation ID:
p. 111-118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Antagonistic species relationships such as parasitoid/host interactions lead to evolutionary arms races between species. Many parasitoids use more than one host species, requiring the parasitoid to adapt to multiple hosts, sometimes being the leader or the follower in the evolutionary back-and-forth between species. Thus, multi-species interactions are dynamic and show temporary evolutionary outcomes at a given point in time. We investigated the interactions of the multivoltine parasitoid fly Ormia lineifrons that uses different katydid hosts for each of its fly generations sequentially over time. We hypothesized that this fly is adapted to utilizing all hosts equally well for the population to persist. We quantified and compared the fly’s development in each of the four Neoconocephalus hosts. Cumulative parasitism rates ranged between ~14% and 73%, but parasitoid load and development time did not differ across host species. Yet, pupal size was lowest for flies using N. velox as a host compared to N. triops and other host species. Successful development from pupa to adult fly differed across host species, with flies emerging from N. triops displaying a significantly lower development success rate than those emerging from N. velox and the other two hosts. Interestingly, N. triops and N. velox did not differ in size and were smaller than N. robustus and N. nebrascensis hosts. Thus, O. lineifrons utilized all hosts but displayed especially low ability to develop in N. triops, potentially due to differences in the nutritional status of the host. In the multi-species interactions between the fly and its hosts, the poor use of N. triops may currently affect the fly’s evolution the most. Similarities and differences across host utilization and their evolutionary background are discussed. 
    more » « less
  2. Abstract Despite the ubiquitous nature of parasitism, how parasitism alters the outcome of host–species interactions such as competition, mutualism and predation remains unknown. Using a phylogenetically informed meta‐analysis of 154 studies, we examined how the mean and variance in the outcomes of species interactions differed between parasitized and non‐parasitized hosts. Overall, parasitism did not significantly affect the mean or variance of host–species interaction outcomes, nor did the shared evolutionary histories of hosts and parasites have an effect. Instead, there was considerable variation in outcomes, ranging from strongly detrimental to strongly beneficial for infected hosts. Trophically‐transmitted parasites increased the negative effects of predation, parasites increased and decreased the negative effects of interspecific competition for parasitized and non‐parasitized heterospecifics, respectively, and parasites had particularly strong negative effects on host species interactions in freshwater and marine habitats, yet were beneficial in terrestrial environments. Our results illuminate the diverse ways in which parasites modify critical linkages in ecological networks, implying that whether the cumulative effects of parasitism are considered detrimental depends not only on the interactions between hosts and their parasites but also on the many other interactions that hosts experience. 
    more » « less
  3. Abstract The role of species interactions, as well as genetic and environmental factors, all likely contribute to the composition and structure of the gut microbiome; however, disentangling these independent factors under field conditions represents a challenge for a functional understanding of gut microbial ecology. Avian brood parasites provide unique opportunities to investigate these questions, as brood parasitism results in parasite and host nestlings being raised in the same nest, by the same parents. Here we utilized obligate brood parasite brown‐headed cowbird nestlings (BHCO;Molothrus ater) raised by several different host passerine species to better understand, via 16S rRNA sequencing, the microbial ecology of brood parasitism. First, we compared faecal microbial communities of prothonotary warbler nestlings (PROW;Protonotaria citrea) that were either parasitized or non‐parasitized by BHCO and communities among BHCO nestlings from PROW nests. We found that parasitism by BHCO significantly altered both the community membership and community structure of the PROW nestling microbiota, perhaps due to the stressful nest environment generated by brood parasitism. In a second dataset, we compared faecal microbiotas from BHCO nestlings raised by six different host passerine species. Here, we found that the microbiota of BHCO nestlings was significantly influenced by the parental host species and the presence of an inter‐specific nestmate. Thus, early rearing environment is important in determining the microbiota of brood parasite nestlings and their companion nestlings. Future work may aim to understand the functional effects of this microbiota variability on nestling performance and fitness. 
    more » « less
  4. Abstract Parasitoid wasps are one of the most species‐rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize towards one or a few host species,Diachasmimorpha longicaudatais a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species.Diachasmimorpha longicaudatahas therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural ecosystems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range ofD. longicaudataacross three genera of agricultural pest species: two of which are permissive hosts forD. longicaudataparasitism and one that is a nonpermissive host. We found that permissive hostsCeratitis capitataandBactrocera dorsaliswere highly susceptible to manual virus injection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive hostZeugodacus cucurbitaelargely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared with the permissive species, indicating that the host range of the viral symbiont may influence the host range ofD. longicaudatawasps. These findings also reveal that viral symbiont activity may be a major contributor to the success ofD. longicaudataas a generalist parasitoid species and a globally successful biological control agent. 
    more » « less
  5. Pujol, Nathalie; Sinkins, Steven P (Ed.)
    ABSTRACT The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont ofDaphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont isOrdospora pajunii, a newly described microsporidian parasite ofDaphnia. We show thatO. pajuniiinfection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North AmericanO. pajuniiwere able to infect multipleDaphniaspecies, including the European speciesDaphnia longispina, as well asCeriodaphniaspp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, thisDaphnia–O. pajuniisymbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCEThe net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to itsDaphniahosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidiumOrdospora pajunii. Despite the parasitic nature of microsporidia, we foundO. pajuniito be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establishO. pajuniiis a valuable model for investigating shifts along the mutualism-parasitism continuum. 
    more » « less