skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coordinated resource allocation to plant growth–defense tradeoffs
Summary Plant resource allocation patterns often reveal tradeoffs that favor growth (G) over defense (D), or vice versa. Ecologists most often explain G–D tradeoffs through principles of economic optimality, in which negative trait correlations are attributed to the reconciliation of fitness costs. Recently, researchers in molecular biology have developed ‘big data’ resources including multi‐omic (e.g. transcriptomic, proteomic and metabolomic) studies that describe the cellular processes controlling gene expression in model species. In this synthesis, we bridge ecological theory with discoveries in multi‐omics biology to better understand how selection has shaped the mechanisms of G–D tradeoffs. Multi‐omic studies reveal strategically coordinated patterns in resource allocation that are enabled by phytohormone crosstalk and transcriptional signal cascades. Coordinated resource allocation justifies the framework of optimality theory, while providing mechanistic insight into the feedbacks and control hubs that calibrate G–D tradeoff commitments. We use the existing literature to describe the coordinated resource allocation hypothesis (CoRAH) that accounts for balanced cellular controls during the expression of G–D tradeoffs, while sustaining stored resource pools to buffer the impacts of future stresses. The integrative mechanisms of the CoRAH unify the supply‐ and demand‐side perspectives of previous G–D tradeoff theories.  more » « less
Award ID(s):
2139080 2129747
PAR ID:
10361247
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
233
Issue:
3
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1051-1066
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene’s role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective. 
    more » « less
  2. Abstract Plants frequently exhibit tradeoffs between reproduction and growth when resources are limited, and often change these allocation patterns in response to stress. Shorter-lived plants such as annuals tend to allocate relatively more resources toward reproduction when stressed, while longer-lived plants tend to invest more heavily in survival and stress defense. However, severe stress may affect the fitness implications of allocating relatively more resources to reproduction versus stress defense. Increased drought intensity and duration have led to widespread mortality events in coniferous forests. In this review, we ask how potential tradeoffs between reproduction and survival influence the likelihood of drought-induced mortality and species persistence. We propose that trees may exhibit what we call ‘fight or flight’ behaviors under stress. ‘Fight’ behaviors involve greater resource allocation toward survival (e.g., growth, drought-resistant xylem and pest defense). ‘Flight’ consists of higher relative allocation of resources to reproduction, potentially increasing both offspring production and mortality risk for the adult. We hypothesize that flight behaviors increase as drought stress escalates the likelihood of mortality in a given location. 
    more » « less
  3. na (Ed.)
    As the era of omics continues to expand with increasing ubiquity and success in both academia and industry, omics-based experiments are becoming commonplace in industrial biotechnology, including efforts to develop novel solutions in bioprocess optimization and cell line development. Omic technologies provide particularly valuable ‘observational’ insights for discovery science, especially in academic research and industrial R&D; however, biomanufacturing requires a different paradigm to unlock ‘actionable’ insights from omics. Here, we argue the value of omic experiments in biotechnology can be maximized with deliberate selection of omic approaches and forethought about analysis techniques. We describe important considerations when designing and implementing omic-based experiments and discuss how systems biology analysis strategies can enhance efforts to obtain actionable insights in mammalian-based biologics production. 
    more » « less
  4. Abstract Background Single tissues can have multiple functions, which can result in constraints, impaired function, and tradeoffs. The insect fat body performs remarkably diverse functions including metabolic control, reproductive provisioning, and systemic immune responses. How polyfunctional tissues simultaneously execute multiple distinct physiological functions is generally unknown. Immunity and reproduction are observed to trade off in many organisms but the mechanistic basis for this tradeoff is also typically not known. Here we investigate constraints and trade-offs in the polyfunctional insect fat body. Results Using single-nucleus sequencing, we determined that the Drosophila melanogaster fat body executes diverse basal functions with heterogenous cellular subpopulations. The size and identity of these subpopulations are remarkably stable between virgin and mated flies, as well as before and after infection. However, as an emergency function, the immune response engages the entire tissue and all cellular subpopulations produce induce expression of defense genes. We found that reproductively active females who were given bacterial infection exhibited signatures of ER stress and impaired capacity to synthesize new protein in response to infection, including decreased capacity to produce antimicrobial peptides. Transient provision of a reversible translation inhibitor to mated females prior to infection rescued general protein synthesis, specific production of antimicrobial peptides, and survival of infection. Conclusions The commonly observed tradeoff between reproduction and immunity appears to be driven, in D. melanogaster , by a failure of the fat body to be able to handle simultaneous protein translation demands of reproductive provisioning and immune defense. We suggest that inherent cellular limitations in tissues that perform multiple functions may provide a general explanation for the wide prevalence of physiological and evolutionary tradeoffs. 
    more » « less
  5. This study investigates the problem of decentralized dynamic resource allocation optimization for ad-hoc network communication with the support of reconfigurable intelligent surfaces (RIS), leveraging a reinforcement learning framework. In the present context of cellular networks, device-to-device (D2D) communication stands out as a promising technique to enhance the spectrum efficiency. Simultaneously, RIS have gained considerable attention due to their ability to enhance the quality of dynamic wireless networks by maximizing the spectrum efficiency without increasing the power consumption. However, prevalent centralized D2D transmission schemes require global information, leading to a significant signaling overhead. Conversely, existing distributed schemes, while avoiding the need for global information, often demand frequent information exchange among D2D users, falling short of achieving global optimization. This paper introduces a framework comprising an outer loop and inner loop. In the outer loop, decentralized dynamic resource allocation optimization has been developed for self-organizing network communication aided by RIS. This is accomplished through the application of a multi-player multi-armed bandit approach, completing strategies for RIS and resource block selection. Notably, these strategies operate without requiring signal interaction during execution. Meanwhile, in the inner loop, the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm has been adopted for cooperative learning with neural networks (NNs) to obtain optimal transmit power control and RIS phase shift control for multiple users, with a specified RIS and resource block selection policy from the outer loop. Through the utilization of optimization theory, distributed optimal resource allocation can be attained as the outer and inner reinforcement learning algorithms converge over time. Finally, a series of numerical simulations are presented to validate and illustrate the effectiveness of the proposed scheme. 
    more » « less