skip to main content


Title: Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes
  more » « less
NSF-PAR ID:
10361324
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced NanoBiomed Research
Volume:
2
Issue:
1
ISSN:
2699-9307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Central nervous system (CNS) injuries are often debilitating, and most currently have no cure. This is due to the formation of a neuroinhibitory microenvironment at injury sites, which includes neuroinflammatory signaling and non‐permissive extracellular matrix (ECM) components. To address this challenge, a viscous interfacial self‐assembly approach, to generate a bioinspired hybrid 3D porous nanoscaffold platform for delivering anti‐inflammatory molecules and establish a favorable 3D‐ECM environment for the effective suppression of the neuroinhibitory microenvironment, is developed. By tailoring the structural and biochemical properties of the 3D porous nanoscaffold, enhanced axonal growth from the dual‐targeting therapeutic strategy in a human induced pluripotent stem cell (hiPSC)‐based in vitro model of neuroinflammation is demonstrated. Moreover, nanoscaffold‐based approaches promote significant axonal growth and functional recovery in vivo in a spinal cord injury model through a unique mechanism of anti‐inflammation‐based fibrotic scar reduction. Given the critical role of neuroinflammation and ECM microenvironments in neuroinhibitory signaling, the developed nanobiomaterial‐based therapeutic intervention may pave a new road for treating CNS injuries.

     
    more » « less
  2. Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation. 
    more » « less
  3. Abstract Background

    Pain is a worldwide problem requiring an effective, affordable, non-addictive therapy. Using the edible plant broccoli, a growth protocol was developed to induce a concentrated combinatorial of potential anti-inflammatories in seedlings.

    Methods

    A growth method was utilized to produce a phenylpropanoid-rich broccoli sprout extract, referred to as Original Extract (OE). OE was concentrated and then resuspended for study of the effects on inflammation events. A rabbit disc model of inflammation and degeneration, and, a mouse model of pain behavior were used for in vivo and in vitro tests. To address aspects of mammalian metabolic processing, the OE was treated with the S9 liver microsome fraction derived from mouse, for use in a mouse in vivo study. Analytical chemistry was performed to identify major chemical species. Continuous variables were analyzed with a number of methods including ANOVA, and two-tailedttests, as appropriate.

    Results

    In a rabbit spine (disc) injury model, inflammatory markers were reduced, and levels of regenerative markers were increased as a result of OE treatment, both in vivo and in vitro. In a mouse pain behavioral model, after treatment with S9 liver microsome fraction, the resultant extract significantly reduced early and late pain behavior in response to a pain stimulus. The OE itself reduced pain behavior in the mouse pain model, but did not achieve the level of significance observed for S9-treated extract. Analytical chemistry undertaken on the extract constituents revealed identities of the chemical species in OE, and how S9 liver microsome fraction treatment altered species identities and proportions.

    Conclusions

    In vitro and in vivo results indicate that the OE, and S9-treated OE broccoli extracts are worthwhile materials to develop a non-opiate inflammation and pain-reducing treatment.

     
    more » « less
  4. Abstract

    Bioprinting is an emerging approach for fabricating cell‐laden 3D scaffolds via robotic deposition of cells and biomaterials into custom shapes and patterns to replicate complex tissue architectures. Bioprinting uses hydrogel solutions called bioinks as both cell carriers and structural components, requiring bioinks to be highly printable while providing a robust and cell‐friendly microenvironment. Unfortunately, conventional hydrogel bioinks have not been able to meet these requirements and are mechanically weak due to their heterogeneously crosslinked networks and lack of energy dissipation mechanisms. Advanced bioink designs using various methods of dissipating mechanical energy are aimed at developing next‐generation cellularized 3D scaffolds to mimic anatomical size, tissue architecture, and tissue‐specific functions. These next‐generation bioinks need to have high print fidelity and should provide a biocompatible microenvironment along with improved mechanical properties. To design these advanced bioink formulations, it is important to understand the structure–property–function relationships of hydrogel networks. By specifically leveraging biophysical and biochemical characteristics of hydrogel networks, high performance bioinks can be designed to control and direct cell functions. In this review article, current and emerging approaches in hydrogel design and bioink reinforcement techniques are critically evaluated. This bottom‐up perspective provides a materials‐centric approach to bioink design for 3D bioprinting.

     
    more » « less
  5. Osteoarthritis (OA), a chronic and degenerative joint disease, remains a challenge in treatment due to the lack of disease-modifying therapies. As a promising therapeutic agent, adipose-derived stem cells (ADSCs) have an effective anti-inflammatory and chondroprotective paracrine effect that can be enhanced by genetic modification. Unfortunately, direct cell delivery without matrix support often results in poor viability of therapeutic cells. Herein, a hydrogel implant approach that enabled intra-articular delivery of gene-engineered ADSCs was developed for improved therapeutic outcomes in a surgically induced rat OA model. An injectable extracellular matrix (ECM)-mimicking hydrogel was prepared as the carrier for cell delivery, providing a favorable microenvironment for ADSC spreading and proliferation. The ECM-mimicking hydrogel could reduce cell death during and post injection. Additionally, ADSCs were genetically modified to overexpress transforming growth factor-β1 (TGF-β1), one of the paracrine factors that exert an anti-inflammatory and pro-anabolic effect. The gene-engineered ADSCs overexpressing TGF-β1 (T-ADSCs) had an enhanced paracrine effect on OA-like chondrocytes, which effectively decreased the expression of tumor necrosis factor-alpha and increased the expression of collagen II and aggrecan. In a surgically induced rat OA model, intra-articular injection of the T-ADSC-loaded hydrogel markedly reduced cartilage degeneration, joint inflammation, and the loss of the subchondral bone. Taken together, this study provides a potential biomaterial strategy for enhanced OA treatment by delivering the gene-engineered ADSCs within an ECM-mimicking hydrogel. 
    more » « less