skip to main content


Title: Environmental correlates of activity and energetics in a wide-ranging social carnivore
Abstract Background

Environmental conditions can influence animal movements, determining when and how much animals move. Yet few studies have quantified how abiotic environmental factors (e.g., ambient temperature, snow depth, precipitation) may affect the activity patterns and metabolic demands of wide-ranging large predators. We demonstrate the utility of accelerometers in combination with more traditional GPS telemetry to measure energy expenditure, ranging patterns, and movement ecology of 5 gray wolves (Canis lupus), a wide-ranging social carnivore, from spring through autumn 2015 in interior Alaska, USA.

Results

Wolves exhibited substantial variability in home range size (range 500–8300 km2) that was not correlated with daily energy expenditure. Mean daily energy expenditure and travel distance were 22 MJ and 18 km day−1, respectively. Wolves spent 20% and 17% more energy during the summer pup rearing and autumn recruitment seasons than the spring breeding season, respectively, regardless of pack reproductive status. Wolves were predominantly crepuscular but during the night spent 2.4 × more time engaged in high energy activities (such as running) during the pup rearing season than the breeding season.

Conclusion

Integrating accelerometry with GPS telemetry can reveal detailed insights into the activity and energetics of wide-ranging predators. Heavy precipitation, deep snow, and high ambient temperatures each reduced wolf mobility, suggesting that abiotic conditions can impact wolf movement decisions. Identifying such patterns is an important step toward evaluating the influence of environmental factors on the space use and energy allocation in carnivores with ecosystem-wide cascading effects, particularly under changing climatic conditions.

 
more » « less
NSF-PAR ID:
10361337
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Animal Biotelemetry
Volume:
10
Issue:
1
ISSN:
2050-3385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A central debate in ecology has been the long‐running discussion on the role of apex predators in affecting the abundance and dynamics of their prey. In terrestrial systems, research has primarily relied on correlational approaches, due to the challenge of implementing robust experiments with replication and appropriate controls. A consequence of this is that we largely suffer from a lack of mechanistic understanding of the population dynamics of interacting species, which can be surprisingly complex. Mechanistic models offer an opportunity to examine the causes and consequences of some of this complexity. We present a bioenergetic mechanistic model of a tritrophic system where the primary vegetation resource follows a seasonal growth function, and the herbivore and carnivore species are modeled using two integral projection models (IPMs) with body mass as the phenotypic trait. Within each IPM, the demographic functions are structured according to bioenergetic principles, describing how animals acquire and transform resources into body mass, energy reserves, and breeding potential. We parameterize this model to reproduce the population dynamics of grass, elk, and wolves in northern Yellowstone National Park (USA) and investigate the impact of wolf reintroduction on the system. Our model generated predictions that closely matched the observed population sizes of elk and wolf in Yellowstone prior to and following wolf reintroduction. The introduction of wolves into our basal grass–elk bioenergetic model resulted in a population of 99 wolves and a reduction in elk numbers by 61% (from 14,948 to 5823) at equilibrium. In turn, vegetation biomass increased by approximately 25% in the growing season and more than threefold in the nongrowing season. The addition of wolves to the model caused the elk population to switch from being food‐limited to being predator‐limited and had a stabilizing effect on elk numbers across different years. Wolf predation also led to a shift in the phenotypic composition of the elk population via a small increase in elk average body mass. Our model represents a novel approach to the study of predator–prey interactions, and demonstrates that explicitly considering and linking bioenergetics, population demography and body mass phenotypes can provide novel insights into the mechanisms behind complex ecosystem processes.

     
    more » « less
  2. Abstract Aim

    A unique risk faced by nocturnally migrating birds is the disorienting influence of artificial light at night (ALAN). ALAN originates from anthropogenic activities that can generate other forms of environmental pollution, including the emission of fine particulate matter (PM2.5). PM2.5concentrations can display strong seasonal variation whose origin can be natural or anthropogenic. How this variation affects seasonal associations with ALAN and PM2.5for nocturnally migrating bird populations has not been explored.

    Location

    Western Hemisphere.

    Time Period

    2021

    Major Taxa Studied

    Nocturnally migrating passerine (NMP) bird species.

    Methods

    We combined monthly estimates of PM2.5and ALAN with weekly estimates of relative abundance for 164 NMP species derived using observations from eBird. We identified groups of species with similar associations with monthly PM2.5. We summarized their shared environmental, geographical, and ecological attributes.

    Results

    PM2.5was lowest in North America, especially at higher latitudes during the boreal winter. PM2.5was highest in the Amazon Basin, especially during the dry season (August–October). ALAN was highest within eastern North America, especially during the boreal winter. For NMP species, PM2.5associations reached their lowest levels during the breeding season (<10 μg/m3) and highest levels during the nonbreeding season, especially for long‐distance migrants that winter in Central and South America (~20 μg/m3). Species that migrate through Central America in the spring encountered similarly high PM2.5concentrations. ALAN associations reached their highest levels for species that migrate (~12 nW/cm2/sr) or spend the nonbreeding season (~15 nW/cm2/sr) in eastern North America.

    Main Conclusions

    We did not find evidence that the disorienting influence of ALAN enhances PM2.5exposure during stopover in the spring and autumn for NMP species. Rather, our findings suggest biomass burning in the Neotropics is exposing NMP species to consistently elevated PM2.5concentrations for an extended period of their annual life cycles.

     
    more » « less
  3. null (Ed.)
    Understanding how mesopredators manage the risks associated with apex predators is key to explaining impacts of apex predators on mesopredator populations and patterns of mesopredator space use. Here we examine the spatial response of coyotes (Canis latrans Say, 1823) to risk posed by wolves (Canis lupus Linnaeus, 1758) using data from sympatric individuals fitted with GPS collars in subarctic Alaska, USA, near the northern range limit for coyotes. We show that coyotes do not universally avoid wolves, but instead demonstrate season-specific responses to both wolf proximity and long-term use of the landscape by wolves. Specifically, coyotes switched from avoiding wolves in summer to preferring areas with wolves in winter, and this selection was consistent across short-term and longer term temporal scales. In the summer, coyotes responded less strongly to risk of wolves when in open areas than when in closed vegetation. We also demonstrate that coyotes maintain extremely large territories averaging 291 km 2 , and experience low annual survival (0.50) with large carnivores being the largest source of mortality. This combination of attraction and avoidance predicated on season and landcover suggests that mesopredators use complex behavioral strategies to mediate the effects of apex predators. 
    more » « less
  4. Abstract

    Top predators have cascading effects throughout the food web, but their impacts on scavenger abundance are largely unknown. Gray wolves (Canis lupus) provide carrion to a suite of scavenger species, including the common raven (Corvus corax). Ravens are wide‐ranging and intelligent omnivores that commonly take advantage of anthropogenic food resources. In areas where they overlap with wolves, however, ravens are numerous and ubiquitous scavengers of wolf‐acquired carrion. We aimed to determine whether subsidies provided through wolves are a limiting factor for raven populations in general and how the wolf reintroduction to Yellowstone National Park in 1995–1997 affected raven population abundance and distribution on the Yellowstone's Northern Range specifically. We counted ravens throughout Yellowstone's Northern Range in March from 2009 to 2017 in both human‐use areas and wolf habitat. We then used statistics related to the local wolf population and the winter weather conditions to model raven abundance during our study period and predict raven abundance on the Northern Range both before and after the wolf reintroduction. In relatively severe winters with greater snowpack, raven abundance increased in areas of human use and decreased in wolf habitat. When wolves were able to acquire more carrion, however, ravens increased in wolf habitat and decreased in areas with anthropogenic resources. Raven populations prior to the wolf reintroduction were likely more variable and heavily dependent on ungulate winter‐kill and hunter‐provided carcasses. The wolf recovery in Yellowstone helped stabilize raven populations by providing a regular food supply, regardless of winter severity. This stabilization has important implications for effective land management as wolves recolonize the west and global climate patterns change.

     
    more » « less
  5. The ability of wild animals to navigate and survive in complex and dynamic environments depends on their ability to store relevant information and place it in a spatial context. Despite the centrality of spatial memory, and given our increasing ability to observe animal movements in the wild, it is perhaps surprising how difficult it is to demonstrate spatial memory empirically. We present a cognitive analysis of movements of several wolves ( Canis lupus ) in Finland during a summer period of intensive hunting and den-centered pup-rearing. We tracked several wolves in the field by visiting nearly all GPS locations outside the den, allowing us to identify the species, location and timing of nearly all prey killed. We then developed a model that assigns a spatially explicit value based on memory of predation success and territorial marking. The framework allows for estimation of multiple cognitive parameters, including temporal and spatial scales of memory. For most wolves, fitted memory-based models outperformed null models by 20 to 50% at predicting locations where wolves chose to forage. However, there was a high amount of individual variability among wolves in strength and even direction of responses to experiences. Some wolves tended to return to locations with recent predation success—following a strategy of foraging site fidelity—while others appeared to prefer a site switching strategy. These differences are possibly explained by variability in pack sizes, numbers of pups, and features of the territories. Our analysis points toward concrete strategies for incorporating spatial memory in the study of animal movements while providing nuanced insights into the behavioral strategies of individual predators. 
    more » « less