skip to main content


Title: Sediment Routing and Floodplain Exchange (SeRFE): A Spatially Explicit Model of Sediment Balance and Connectivity Through River Networks
Abstract

Sediment regimes, i.e., the processes that recruit, transport, and store sediment, create the physical habitats that underpin river‐floodplain ecosystems. Natural and human‐induced disturbances that alter sediment regimes can have cascading effects on river and floodplain morphology, ecosystems, and a river's ability to provide ecosystem services, yet prediction of the response of sediment dynamics to disturbance is challenging. We developed the Sediment Routing and Floodplain Exchange (SeRFE) model, which is a network‐based, spatially explicit framework for modeling sediment recruitment to and subsequent transport through drainage networks. SeRFE additionally tracks the spatially and temporally variable balance between sediment supply and transport capacity. Simulations using SeRFE can account for various types of watershed disturbance and for channel‐floodplain sediment exchange. SeRFE is simple, adaptable, and can be run with widely available geospatial data and limited field data. The model is driven by real or user‐generated hydrographs, allowing the user to assess the combined effects of disturbance, channel‐floodplain interactions and particular flow scenarios on the propagation of disturbances throughout a drainage network, and the resulting impacts to reaches of interest. We tested the model in the Santa Clara River basin, Southern California, in subbasins affected by large dams and wildfire. Model results highlight the importance of hydrologic conditions on postwildfire sediment yield and illustrate the spatial extent of dam‐induced sediment deficit during a flood. SeRFE can provide contextual information on reach‐scale sediment balance conditions, sensitivity to altered sediment regimes, and potential for morphologic change for managers and practitioners working in disturbed watersheds.

 
more » « less
Award ID(s):
1633831 1644619
NSF-PAR ID:
10361338
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
12
Issue:
9
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Floodplains provide important ecological, hydrological, and geomorphic functions within river corridors. During overbank flows, complex hydrodynamic conditions occur as water exits and re‐enters the channel and interacts with hydraulically rough floodplain vegetation. However, the extent to which floodplain vegetation influences channel‐altering hydrodynamic forces and thus bedform topography and sediment transport is poorly understood. We address this knowledge gap and present the results of flume experiments where we measured bedform topography under varied floodplain vegetation conditions at two overbank flow relative depths. The experiments were conducted in a 1‐m wide meandering compound channel inset in a 15.4 long, 4.9‐m wide basin. The channel bed was a mobile sand‐and‐gravel mixture with a median sediment size of 3.3 mm, and sediment transport occurred only within the channel. We tested bare and vegetated floodplain conditions with 2.7‐cm diameter rigid emergent vegetation elements at spacings of 3.0 and 12.1 units m−2. We performed a moving‐window analysis of topographic surface metrics including skewness, coefficient of variation, and standard deviation, as well as topographic patch analysis of area and contagion to measure changes in bedform heterogeneity as flow depth and vegetation density were varied. Our results show that both greater density vegetation and larger flows can increase bedform topographic heterogeneity. These findings suggest that floodplain vegetation and natural hydrologic regimes that include overbank flows can enhance stream habitat complexity. Designing for the effects of established vegetation conditions and prioritizing floodplain vegetation planting may be useful for river managers striving to achieve successful biomic river restoration.

     
    more » « less
  2. Abstract

    Feedbacks between geomorphic processes and riparian vegetation in river systems are an important control on fluvial morphodynamics and on vegetation composition and distribution. Invasion by nonnative riparian species alters these feedbacks and drives management and restoration along many rivers, highlighting a need for ecogeomorphic models to assist with understanding feedbacks between plants and fluvial processes, and with restoration planning. In this study, we coupled a network‐scale sediment model (Sediment Routing and Floodplain Exchange; SeRFE) that simulates bank erosion and sediment transport in a spatially explicit manner with a recruitment potential analysis for a species of riparian vegetation (Arundo donax) that has invaded river systems and wetlands in Mediterranean climates worldwide. We used the resulting ecogeomorphic framework to understand both network‐scale sediment balances and the spread and recruitment ofA. donaxin the Santa Clara River watershed of Southern California. In the coupled model, we simulated a 1‐year time period during which a 5‐year recurrence interval flood occurred in the mainstem Santa Clara River. Outputs identify key areas acting as sources ofA. donaxrhizomes, which are subsequently transported by flood flows and deposited in reaches downstream. These results were validated in three study reaches, where we assessed postflood geomorphic and vegetation changes. The analysis demonstrates how a coupled model approach is able to highlight basin‐scale ecogeomorphic dynamics in a manner that is useful for restoration planning and prioritization and can be adapted to analogous ecogeomorphic questions in other watersheds.

     
    more » « less
  3. Abstract

    Meandering river floodplains often contain intermittently flooded complex channel networks. Many questions remain as to the pervasiveness, function, and evolution of these floodplain channels. In this present work, we analyzed size‐specific sediment transport potential and assessed whether the channelized floodplain of the meandering East Fork White River near Seymour, Indiana is on a net erosional or depositional trajectory. We applied a two‐dimensional hydrodynamic model and used simulated model results to estimate the largest sediment size that can be moved in suspension and as bedload at various flows for grain size classes between 4 µm and 64 mm. We developed a probabilistic method that integrates the largest sediment size that can be moved at various flows to compute an effective grain size, which we compared to measured field data. Results show that the river is capable of supplying sand to the floodplain and these floodplain channels can transport sand in suspension and gravel as bedload. This suggests that sediment supplied from the river could be transported as bedload in floodplain channels. These floodplain channels are supply limited under the current hydrologic regime and the grain size distribution of the bed surface is set by the flow conditions; thus, these floodplain channels are net erosional. Finally, our proposed method of probabilistically integrating the largest sediment size that can be moved at various flows can be used to predict the upper end of the grain size distribution in suspension and in bed material, which is applicable to floodplains as well as coastal areas.

     
    more » « less
  4. Abstract

    Plants influence river channel topography, but our understanding of the interaction among plants, flow, and sediment is limited, especially when sediment supply is variable. Using laboratory experiments in a recirculating flume with live seedlings in a mobile sand bed, we demonstrate how varying the balance between sediment supply and transport capacity shifts the relationship between plants and bar‐surface topography. Each experimental trial contrasted two sediment conditions, in which initially supply was maintained in equilibrium with transport via sediment recirculation, followed by sediment deficit, in which transport capacity exceeded supply, which was set to zero. For both sediment balances, the topographic response was sensitive to plant size, with larger plants inducing greater aggradation relative to a baseline condition. During sediment equilibrium, the positive relationship between plant size and topographic change also depended on species morphology (multi‐stemmed shrubs versus single‐stemmed plants). Plant morphology effects disappeared when the sediment balance shifted to a deficit, but the presence of plants had a greater impact on the magnitude of change compared to the topographic response under sediment equilibrium. Our results suggest that the interactions among sediment supply, plants, and topography may be strongest on rivers with a balance in sediment supply and transport capacity. Because of the large variability in fluvial sediment supply resulting from natural and anthropogenic influences, these interactions will differ spatially (e.g. longitudinally through a watershed) and at different temporal scales, from single flood events to longer time periods. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  5. Abstract

    The strength of interactions between plants and river processes is mediated by plant traits and fluvial conditions, including above‐ground biomass, stem density and flexibility, channel and bed‐material properties, and flow and sediment regimes. In many rivers, concurrent changes in (1) the composition of riparian vegetation communities as a result of exotic species invasion and (2) shifts in hydrology have altered physical and ecological conditions in a manner that has been mediated by feedbacks between vegetation and morphodynamic processes. We review howTamarix, which has invaded many southwestern US waterways, andPopulusspecies, woody pioneer trees that are native to the region, differentially affect hydraulics, sediment transport, and river morphology. We draw on flume, field, and modelling approaches spanning the individual seedling to river‐corridor scales. In a flume study, we found that differences in the crown morphology, stem density, and flexibility ofTamarixcompared toPopulusinfluenced near‐bed flow velocities in a manner that favoured aggradation associated withTamarix. Similarly, at the patch and corridor scales, observations confirmed increased aggradation with increased vegetation density. Furthermore, long‐term channel adjustments were different forTamarix‐ versusPopulus‐dominated reaches, with faster and greater geomorphic adjustments forTamarix. Collectively, our studies show how plant‐trait differences betweenTamarixandPopulus, from individual seedlings to larger spatial and temporal scales, influence the co‐adjustment of rivers and riparian plant communities. These findings provide a basis for predicting changes in alluvial riverine systems which we conceptualize as a Green New Balance model that considers how channels may adjust to changes in plant traits and community structure, in addition to alterations in flow and sediment supply. We offer suggestions regarding how the Green New Balance can be used in management and invasive species management.

     
    more » « less