skip to main content

Title: High-pressure compacted recycled polymeric composite waste materials for marine applications
Abstract Abstract

Options for recycling fiber composite polymer (FCP) materials are scarce, as these materials cannot be normally recycled and are toxic when improperly disposed. Additionally, reducing water usage is an increasing concern, as the concrete industry currently uses 10% of the world’s industrial water. Therefore, building upon our previous work, this research explores the use of polymer hybrid carbon and glass composite waste products as reinforcements in high-pressure compacted cement. Our material used nearly 70% less water during manufacturing and exhibited improved durability and salt corrosion resistance. Compression strength tests were performed on high-pressure compacted materials containing 6.0 wt% recycled admixtures before and after saltwater aging, and the results showed that the material retained 90% of its original compression strength after aging, as it contained fewer pores and cavities. Our experimental work was supplemented by molecular dynamics. Simulations, which indicated that the synergetic effects of compaction and FCP admixture addition slowed the diffusion of corrosive salt ions by an average of 84%. Thus, our high-pressure compacted cement material may be suitable for extended use in marine environments, while also reducing the amount of commercial fiber composite polymer waste material that is sent to the landfill.

<bold>Article Highlights</bold>

Fiber composite waste more » was successfully recycled into denser, high-pressure compacted ordinary Portland cement materials.

High-pressure compacted cement samples containing 6% recycled admixtures retained 90% of their compression strength after salt aging.

The high-pressure compaction method utilized 70% less water during specimen fabrication.

« less
Authors:
; ;
Publication Date:
NSF-PAR ID:
10361345
Journal Name:
SN Applied Sciences
Volume:
4
Issue:
2
ISSN:
2523-3963
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Responsible disposal of vehicles at the end of life is a pressing environmental concern. In particular, waste plastic forms the largest proportion of non-recycled waste material from light-duty vehicles, and often ends up in a landfill. Here we report the upcycling of depolluted, dismantled and shredded end-of-life waste plastic into flash graphene using flash Joule heating. The synthetic process requires no separation or sorting of plastics and uses no solvents or water. We demonstrate the practical value of the graphene as a re-inforcing agent in automotive polyurethane foam composite, where its introduction leads to improved tensile strength and low frequency noise absorption properties. We demonstrate process continuity by upcycling the resulting foam composite back into equal-quality flash graphene. A prospective cradle-to-gate life cycle assessment suggests that our method may afford lower cumulative energy demand and water use, and a decrease in global warming potential compared to traditional graphene synthesis methods.

  2. Abstract

    Supercapacitors are beneficial as energy storage devices and can obtain high capacitance values greater than conventional capacitors and high power densities compared to batteries. However, in order to improve upon the overall cost, energy density, and charge-discharge rates, the electrode material of supercapacitors needs to be fine-tuned with an inexpensive, high conducting source. We prepared a Co(III) complex and polypyrrole (PPy) composite thin films (CoN4-PPy) that was electrochemically deposited on the surface of a glassy carbon working electrode. Cyclic voltammetry studies indicate the superior performance of CoN4-PPy in charge storage in acidic electrolyte compared to alkaline and organic solutions. The CoN4-PPy material generated the highest amount of specific capacitance (up to 721.9 F/g) followed by Co salt and PPy (Co-PPy) material and PPy alone. Cyclic performance studies showed the excellent electrochemical stability of the CoN4-PPy film in the acidic medium. Simply electrochemically depositing an inexpensive Co(III) complex with a high electrically conducting polymer of PPy delivered a superior electrode material for supercapacitor applications. Therefore, the results indicate that novel thin films derived from Co(III) metal complex and PPy can store a large amount of energy and maintain high stability over many cycles, revealing its excellent potential in supercapacitor devices.

  3. Fiber reinforced polymer (FRP) composite materials have been used in a variety of civil and infrastructure applications since the early1980s, including in wind turbine blades. The world is now confronting the problem of how to dispose of decommissioned blades in an environmentally sustainable manner. One proposed solution is to repurpose the blades for use in new structures. One promising repurposing application is in pedestrian and cycle bridges. This paper reports on the characterization of a 13.4-m long FRP wind blade manufactured by LM Windpower (Kolding, Demark) in 1994. Two blades of this type were used as girders for a pedestrian bridge on a greenway (walking and biking trail) in Cork, Ireland. The as-received geometric, material, and structural properties of the 27 year-old blade were obtained for use in the structural design of the bridge. The material tests included physical (volume fraction and laminate architecture) and mechanical (tension and compression) tests at multiple locations. Full-scale flexural testing of a 4-m long section of the blade between 7 and 11 m from the root of the blade was performed to determine the load-deflection behavior, ultimate capacity, strain history, and failure modes when loaded to failure. Key details of the testing and the results are provided.more »The results of the testing revealed that the FRP material is still in excellent condition and that the blade has the strength and stiffness in flexure to serve as a girder for the bridge constructed.

    « less
  4. Geologic processes at convergent plate margins control geochemical cycling, seismicity, and deep biosphere activity in subduction zones and suprasubduction zone lithosphere. International Ocean Discovery Program Expedition 366 was designed to address the nature of these processes in the shallow to intermediate depth of the Mariana subduction channel. Although no technology is available to permit direct sampling of the subduction channel of an intraoceanic convergent margin at depths up to 19 km, the Mariana forearc region (between the trench and the active volcanic arc) provides a means to access materials from this zone. Active conduits, resulting from fractures in the forearc, are prompted by along- and across-strike extension that allows slab-derived fluids and materials to ascend to the seafloor along associated faults, resulting in the formation of serpentinite mud volcanoes. Serpentinite mud volcanoes of the Mariana forearc are the largest mud volcanoes on Earth. Their positions adjacent to or atop fault scarps on the forearc are likely related to the regional extension and vertical tectonic deformation in the forearc. Serpentinite mudflows at these volcanoes include serpentinized forearc mantle clasts, crustal and subducted Pacific plate materials, a matrix of serpentinite muds, and deep-sourced formation fluid. Mud volcanism on the Mariana forearc occursmore »within 100 km of the trench, representing a range of depths and temperatures to the downgoing plate and the subduction channel. These processes have likely been active for tens of millions of years at the Mariana forearc and for billions of years on Earth. At least 19 active serpentinite mud volcanoes have been located in the Mariana forearc. Two of these mud volcanoes are Conical and South Chamorro Seamounts, which are the farthest from the Mariana Trench at 86 and 78 km, respectively. Both seamounts were cored during Ocean Drilling Program Legs 125 and 195, respectively. Data from these two seamounts represent deeper, warmer examples of the continuum of slab-derived materials as the Pacific plate subducts, providing a snapshot of how slab subduction affects fluid release, the composition of ascending fluids, mantle hydration, and the metamorphic paragenesis of subducted oceanic lithosphere. Data from the study of these two mud volcanoes constrain the pressure, temperature, and composition of fluids and materials within the subduction channel at depths of up to 19 km. Understanding such processes is necessary for elucidating factors that control seismicity in convergent margins, tectonic and magma genesis processes in the volcanic arc and backarc areas, fluid and material fluxes, and the nature and variability of environmental conditions that impact subseafloor microbial communities. Expedition 366 focused on data collection from cores recovered from three serpentinite mud volcanoes that define a continuum of subduction-channel processes to compare with results from drilling at the two previously cored serpentinite mud volcanoes and with previously collected gravity, piston, and remotely operated vehicle push cores across the trench-proximal forearc. Three serpentinite mud volcanoes (Yinazao, Fantangisña, and Asùt Tesoro) were chosen at distances 55 to 72 km from the Mariana Trench. Cores were recovered from active sites of eruption on their summit regions and on the flanks where ancient flows are overlain by more recent ones. Recovered materials show the effects of dynamic processes that are active at these sites, bringing a range of materials to the seafloor, including materials from the crust of the Pacific plate, most notably subducted seamounts (even corals). Most of the recovered material consists of serpentinite mud containing lithic clasts, which are derived from the underlying forearc crust and mantle and the subducting Pacific plate. A thin cover of pelagic sediment was recovered at many Expedition 366 sites, and at Site U1498 we cored through distal serpentinite mudflows and into the underlying pelagic sediment and volcanic ash deposits. Recovered serpentinized ultramafic rocks and mudflow matrix materials are largely uniform in major element composition, spanning a limited range in SiO2, MgO, and Fe2O3 compositions. However, variation in trace element composition reflects interstitial water composition, which differs as a function of the temperature and pressure of the underlying subduction channel. Dissolved gases H2, CH4, and C2H6 are highest at the site farthest from the trench, which also has the most active fluid discharge of the Expedition 366 serpentinite mud volcanoes. These dissolved gases and their active discharge from depth likely support active microbial communities, which were the focus of in-depth subsampling and preservation for shore-based analytical and culturing procedures. The effects of fluid discharge were also registered in the porosity and gamma ray attenuation density data indicated by higher than expected values at some of the summit sites. These higher values are consistent with overpressured fluids that slow compaction of serpentinite mud deposits. In contrast, flank sites have significantly greater decreases in porosity with depth, suggesting that processes in addition to compaction are required to achieve the observed data. Thermal measurements reveal higher heat flow values on the flanks (~31 mW/m2) than on the summits (~17 mW/m2) of the seamounts. The new 2G Enterprises superconducting rock magnetometer (liquid helium free) revealed relatively high values of both magnetization and bulk magnetic susceptibility of discrete samples related to ultramafic rocks, particularly dunite. Magnetite, a product of serpentinization, and authigenic carbonates were observed in the mudflow matrix materials. In addition to coring operations, Expedition 366 focused on the deployment and remediation of borehole casings for future observatories and set the framework for in situ experimentation. Borehole work commenced at South Chamorro Seamount, where the original-style CORK was partially removed. Work then continued at each of the three summit sites following coring operations. Cased boreholes with at least three joints of screened casing were deployed, and a plug of cement was placed at the bottom of each hole. Water samples were collected from two of the three boreholes, revealing significant inputs of formation fluids. This suggests that each of the boreholes tapped a hydrologic zone, making these boreholes suitable for experimentation with the future deployment of a CORK-Lite.« less
  5. Recycling glass fiber reinforced polymer (GFRP) composite materials has been proven to be challenging due to their high mechanical performance and high resistance to harsh chemical and thermal conditions. This work discusses the efforts made in the past to mechanically process GFRP waste materials by cutting them into large-sized (cm scale) pieces, as opposed to pulverization, for use in concrete mixtures. These pieces can be classified into two main categories—coarse aggregate and discrete reinforcement, here referred to as “needles.” The results from all the studies show that using GFRP coarse aggregate leads to significant reductions in the compressive strength and tensile strength of concrete. However, GFRP needles lead to sizable increases in the energy absorption capacity of concrete. In addition, if the glass fibers are longitudinally aligned within the needles, these elements can substantially increase the tensile strength of concrete. Processing GFRP waste into needles requires less energy and time than that for producing GFRP coarse aggregate. Also, compared to pulverized GFRP waste, which consists of broken and separate particles of glass and resin that at best can be used as low-quality fillers, GFRP needles are high strength composite elements