skip to main content


Title: Microbiological characteristics of bacteremias among COVID-19 hospitalized patients in a tertiary referral hospital in Northern Greece during the second epidemic wave
ABSTRACT

Northern Greece was struck by an intense second COVID-19 (coronavirus disease 2019) epidemic wave during the fall of 2020. Because of the coinciding silent epidemic of multidrug-resistant organisms, the handling of COVID-19 patients became even more challenging. In the present study, the microbiological characteristics of bacteremias in confirmed cases of hospitalized COVID-19 patients were determined. Data from 1165 patients hospitalized between September and December 2020 were reviewed regarding the frequency of bloodstream infections, the epidemiology and the antibiotic susceptibility profiles of the causative bacteria. The hospital's antibiotic susceptibility data for all major nosocomial pathogens isolated from bacteremias of COVID-19 patients between September and December 2020 versus those between September and December 2019 were also compared. Overall, 122 patients developed bacteremia (10.47%). The average of time interval between hospitalization date and development of bacteremia was 13.98 days. Admission to ICU occurred in 98 out of 122 patients with an average stay time of 15.85 days and 90.81% in-hospital mortality. In total, 166 pathogens were recovered including 114 Gram-negative bacteria and 52 Gram-positive cocci. Acinetobacter baumannii was the most frequent (n = 51) followed by Klebsiella pneumoniae (n = 45) and Enterococcus faecium (n = 31). Bacteremias in hospitalized COVID-19 patients were related with prolonged time of hospitalization and higher in-hospital mortality, and the isolated microorganisms represented the bacterial species that were present in our hospital before the COVID-19 pandemic. Worryingly, the antibiotic resistance rates were increased compared with the pre-pandemic era for all major opportunistic bacterial pathogens. The pandemic highlighted the need for continuous surveillance of patients with prolonged hospitalization.

 
more » « less
NSF-PAR ID:
10361389
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
FEMS Microbes
Volume:
2
ISSN:
2633-6685
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The Mexican Institute of Social Security (IMSS) is the largest health care provider in Mexico, covering about 48% of the Mexican population. In this report, we describe the epidemiological patterns related to confirmed cases, hospitalizations, intubations, and in-hospital mortality due to COVID-19 and associated factors, during five epidemic waves recorded in the IMSS surveillance system.

    Methods

    We analyzed COVID-19 laboratory-confirmed cases from the Online Epidemiological Surveillance System (SINOLAVE) from March 29th, 2020, to August 27th, 2022. We constructed weekly epidemic curves describing temporal patterns of confirmed cases and hospitalizations by age, gender, and wave. We also estimated hospitalization, intubation, and hospital case fatality rates. The mean days of in-hospital stay and hospital admission delay were calculated across five pandemic waves. Logistic regression models were employed to assess the association between demographic factors, comorbidities, wave, and vaccination and the risk of severe disease and in-hospital death.

    Results

    A total of 3,396,375 laboratory-confirmed COVID-19 cases were recorded across the five waves. The introduction of rapid antigen testing at the end of 2020 increased detection and modified epidemiological estimates. Overall, 11% (95% CI 10.9, 11.1) of confirmed cases were hospitalized, 20.6% (95% CI 20.5, 20.7) of the hospitalized cases were intubated, and the hospital case fatality rate was 45.1% (95% CI 44.9, 45.3). The mean in-hospital stay was 9.11 days, and patients were admitted on average 5.07 days after symptoms onset. The most recent waves dominated by the Omicron variant had the highest incidence. Hospitalization, intubation, and mean hospitalization days decreased during subsequent waves. The in-hospital case fatality rate fluctuated across waves, reaching its highest value during the second wave in winter 2020. A notable decrease in hospitalization was observed primarily among individuals ≥ 60 years. The risk of severe disease and death was positively associated with comorbidities, age, and male gender; and declined with later waves and vaccination status.

    Conclusion

    During the five pandemic waves, we observed an increase in the number of cases and a reduction in severity metrics. During the first three waves, the high in-hospital fatality rate was associated with hospitalization practices for critical patients with comorbidities.

     
    more » « less
  2. Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infected person spreads the virus to at least two others, on average (Emanuel et al. in N Engl J Med. 2020, Livingston and Bucher in JAMA 323(14):1335, 2020). A conservatively low estimate is that 5 % of the population could become infected within 3 months. Preliminary data from China and Italy regarding the distribution of case severity and fatality vary widely (Wu and McGoogan in JAMA 323(13):1239–42, 2020). A recent large-scale analysis from China suggests that 80 % of those infected either are asymptomatic or have mild symptoms; a finding that implies that demand for advanced medical services might apply to only 20 % of the total infected. Of patients infected with Covid-19, about 15 % have severe illness and 5 % have critical illness (Emanuel et al. in N Engl J Med. 2020). Overall, mortality ranges from 0.25 % to as high as 3.0 % (Emanuel et al. in N Engl J Med. 2020, Wilson et al. in Emerg Infect Dis 26(6):1339, 2020). Case fatality rates are much higher for vulnerable populations, such as persons over the age of 80 years (> 14 %) and those with coexisting conditions (10 % for those with cardiovascular disease and 7 % for those with diabetes) (Emanuel et al. in N Engl J Med. 2020). Overall, Covid-19 is substantially deadlier than seasonal influenza, which has a mortality of roughly 0.1 %. Public health efforts depend heavily on predicting how diseases such as those caused by Covid-19 spread across the globe. During the early days of a new outbreak, when reliable data are still scarce, researchers turn to mathematical models that can predict where people who could be infected are going and how likely they are to bring the disease with them. These computational methods use known statistical equations that calculate the probability of individuals transmitting the illness. Modern computational power allows these models to quickly incorporate multiple inputs, such as a given disease’s ability to pass from person to person and the movement patterns of potentially infected people traveling by air and land. This process sometimes involves making assumptions about unknown factors, such as an individual’s exact travel pattern. By plugging in different possible versions of each input, however, researchers can update the models as new information becomes available and compare their results to observed patterns for the illness. In this paper we describe the development a model of Corona spread by using innovative big data analytics techniques and tools. We leveraged our experience from research in modeling Ebola spread (Shaw et al. Modeling Ebola Spread and Using HPCC/KEL System. In: Big Data Technologies and Applications 2016 (pp. 347-385). Springer, Cham) to successfully model Corona spread, we will obtain new results, and help in reducing the number of Corona patients. We closely collaborated with LexisNexis, which is a leading US data analytics company and a member of our NSF I/UCRC for Advanced Knowledge Enablement. The lack of a comprehensive view and informative analysis of the status of the pandemic can also cause panic and instability within society. Our work proposes the HPCC Systems Covid-19 tracker, which provides a multi-level view of the pandemic with the informative virus spreading indicators in a timely manner. The system embeds a classical epidemiological model known as SIR and spreading indicators based on causal model. The data solution of the tracker is built on top of the Big Data processing platform HPCC Systems, from ingesting and tracking of various data sources to fast delivery of the data to the public. The HPCC Systems Covid-19 tracker presents the Covid-19 data on a daily, weekly, and cumulative basis up to global-level and down to the county-level. It also provides statistical analysis for each level such as new cases per 100,000 population. The primary analysis such as Contagion Risk and Infection State is based on causal model with a seven-day sliding window. Our work has been released as a publicly available website to the world and attracted a great volume of traffic. The project is open-sourced and available on GitHub. The system was developed on the LexisNexis HPCC Systems, which is briefly described in the paper. 
    more » « less
  3. The gut is a well-established route of infection and target for viral damage by SARSCoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) symptoms. We asked whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n=30) and healthy control (n=16) were collected during hospitalization. Plasma microbiome was analyzed using 16S rRNA sequencing, metatranscriptomic analysis, and gut permeability markers including FABP-2, PGN and LPS in both patient cohorts. Almost 65% (9 out 14) COVID-19 patients showed abnormal presence of gut microbes in their bloodstream. Plasma samples contained predominately Proteobacteria, Firmicutes, and Actinobacteria. The abundance of gram-negative bacteria (Acinetobacter, Nitrospirillum, Cupriavidus, Pseudomonas, Aquabacterium, Burkholderia, Caballeronia, Parabhurkholderia, Bravibacterium, and Sphingomonas) was higher than the gram-positive bacteria (Staphylococcus and Lactobacillus) in COVID-19 subjects. The levels of plasma gut permeability markers FABP2 (1282±199.6 vs 838.1±91.33; p=0.0757), PGN (34.64±3.178 vs 17.53±2.12; p<0.0001), and LPS (405.5±48.37 vs 249.6±17.06; p=0.0049) were higher in COVID-19 patients compared to healthy subjects. These findings support that the intestine may represent a source for bacteremia and may contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID19 patients. 
    more » « less
  4. null (Ed.)
    Objective: To identify differences in short-term outcomes of patients with coronavirus disease 2019 (COVID-19) according to various racial/ethnic groups.Design: Analysis of Cerner de-identified COVID-19 dataset.Setting: A total of 62 health care facilities.Participants: The cohort included 49,277 adult COVID-19 patients who were hospitalized from December 1, 2019 to November 13, 2020.Methods: We compared patients’ age, gender, individual components of Charl­son and Elixhauser comorbidities, medical complications, use of do-not-resuscitate, use of palliative care, and socioeconomic status between various racial and/or ethnic groups. We further compared the rates of in-hos­pital mortality and non-routine discharges between various racial and/or ethnic groups.Main Outcome Measures: The primary outcome of interest was in-hospital mortali­ty. The secondary outcome was non-routine discharge (discharge to destinations other than home, such as short-term hospitals or other facilities including intermediate care and skilled nursing homes).Results: Compared with White patients, in-hospital mortality was significantly higher among African American (OR 1.5; 95%CI:1.3-1.6, P<.001), Hispanic (OR1.4; 95%CI:1.3-1.6, P<.001), and Asian or Pacific Islander (OR 1.5; 95%CI: 1.1-1.9, P=.002) patients after adjustment for age and gender, Elixhauser comorbidities, do-not-resuscitate status, palliative care use, and socioeconomic status.Conclusions: Our study found that, among hospitalized patients with COVID-2019, African American, Hispanic, and Asian or Pacific Islander patients had increased mortality compared with White patients after adjusting for sociodemographic factors, comorbidities, and do-not-resuscitate/pallia­tive care status. Our findings add additional perspective to other recent studies. Ethn Dis. 2021;31(3):389-398; doi:10.18865/ed.31.3.389 
    more » « less
  5. Abstract Background We previously developed and validated a predictive model to help clinicians identify hospitalized adults with coronavirus disease 2019 (COVID-19) who may be ready for discharge given their low risk of adverse events. Whether this algorithm can prompt more timely discharge for stable patients in practice is unknown. Objectives The aim of the study is to estimate the effect of displaying risk scores on length of stay (LOS). Methods We integrated model output into the electronic health record (EHR) at four hospitals in one health system by displaying a green/orange/red score indicating low/moderate/high-risk in a patient list column and a larger COVID-19 summary report visible for each patient. Display of the score was pseudo-randomized 1:1 into intervention and control arms using a patient identifier passed to the model execution code. Intervention effect was assessed by comparing LOS between intervention and control groups. Adverse safety outcomes of death, hospice, and re-presentation were tested separately and as a composite indicator. We tracked adoption and sustained use through daily counts of score displays. Results Enrolling 1,010 patients from May 15, 2020 to December 7, 2020, the trial found no detectable difference in LOS. The intervention had no impact on safety indicators of death, hospice or re-presentation after discharge. The scores were displayed consistently throughout the study period but the study lacks a causally linked process measure of provider actions based on the score. Secondary analysis revealed complex dynamics in LOS temporally, by primary symptom, and hospital location. Conclusion An AI-based COVID-19 risk score displayed passively to clinicians during routine care of hospitalized adults with COVID-19 was safe but had no detectable impact on LOS. Health technology challenges such as insufficient adoption, nonuniform use, and provider trust compounded with temporal factors of the COVID-19 pandemic may have contributed to the null result. Trial registration ClinicalTrials.gov identifier: NCT04570488. 
    more » « less