skip to main content

Title: The adaptive benefits of agricultural water markets in California

Climate change is expected to increase the scarcity and variability of fresh water supplies in some regions with important implications for irrigated agriculture. By allowing for increased flexibility in response to scarcity and by incentivizing the allocation of water to higher value use, markets can play an important role in limiting the economic losses associated with droughts. Using data on water demand, the seniority of water rights, county agricultural reports, high-resolution data on cropping patterns, and agronomic estimates of crop water requirements, we estimate the benefits of market-based allocations of surface water for California’s Central Valley. Specifically, we estimate the value of irrigation water and compare the agricultural costs of water shortages under the existing legal framework and under an alternate system that allows for trading of water. We find that a more efficient allocation of curtailments could reduce the costs of water shortages by as much as $362 million dollars per year or 4.4% of the net agricultural revenue in California in expectation, implying that institutional and market reform may offer important opportunities for adaptation.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Page Range / eLocation ID:
Article No. 044036
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    California’s Central Valley is one of the world’s most productive agricultural regions. Its high-value fruit, vegetable, and nut crops rely on surface water imports from a vast network of reservoirs and canals as well as groundwater, which has been substantially overdrafted to support irrigation. The region has undergone a shift to perennial (tree and vine) crops in recent decades, which has increased water demand amid a series of severe droughts and emerging regulations on groundwater pumping. This study quantifies the expansion of perennial crops in the Tulare Lake Basin, the southern region of the Central Valley with limited natural water availability. A gridded crop type dataset is compiled on a 1 mi2spatial resolution from a historical database of pesticide permits over the period 1974–2016 and validated against aggregated county-level data. This spatial dataset is then analyzed by irrigation district, the primary spatial scale at which surface water supplies are determined, to identify trends in planting decisions and agricultural water demand over time. Perennial crop acreage has nearly tripled over this period, and currently accounts for roughly 60% of planted area and 80% of annual revenue. These trends show little relationship with water availability and have been driven primarily by market demand. From this data, we focus on the increasing minimum irrigation needs each year to sustain perennial crops. Results indicate that under a range of plausible future regulations on groundwater pumping ranging from 10% to 50%, water supplies may fail to consistently meet demands, increasing losses by up to 30% of annual revenues. More broadly, the datasets developed in this work will support the development of dynamic models of the integrated water-agriculture system under uncertain climate and regulatory changes to understand the combined impacts of water supply shortages and intensifying irrigation demand.

    more » « less
  2. Abstract

    Urban communities around the world are grappling with the challenges associated with population increases, drought, and projected water shortages. With a substantial global shortfall between water supply and demand expected by 2030, water planning strategies must adapt to a new reality characterized by higher temperatures and less precipitation, requiring new ways of thinking about water management, use, and governance. Commonplace strategies such as water conservation and nonpotable water reuse might not be sufficient to adequately stretch water supplies in water‐scarce parts of the industrialized world. In the United States, planned potable water reuse (i.e., purification of domestic wastewater for reuse as drinking water) is emerging as a way forward to mitigate water shortages without significant changes to lifestyle, behavior, or infrastructure. But potable reuse is not the only solution: paradigm shifting and disruptive options that more holistically address water scarcity, such as composting toilets and market‐based approaches to water use, are also gaining traction, and they could be pursued alongside or instead of potable water reuse. However, these options would require more significant changes to lifestyles, behavior, infrastructure, and governance. While all of the options considered offer advantages, they each come with new concerns and challenges related to cost, public perception, social norms, and policy. The goal of this work is to consider a number of plausible solutions to water scarcity—partial and complete, traditional and disruptive—to stimulate forward‐looking thinking about the increasingly common global problem of water scarcity.

    This article is categorized under:

    Engineering Water > Sustainable Engineering of Water

    Engineering Water > Planning Water

    more » « less
  3. Abstract

    The Latin America and the Caribbean (LAC) region plays key roles in both meeting global agricultural demands and maintaining carbon sinks due to its abundant land and water resources. In this study we use the Global Change Analysis Model to evaluate the opportunities and challenges posed by two global‐scale drivers: agricultural market integration (i.e., reduction of trade barriers) and land‐based climate mitigation policy. We evaluate their potential individual and combined impacts on agricultural production and trade revenues across LAC's economies through mid‐century, as well as the resulting impacts on agricultural consumers and integrated land‐water‐climate systems across LAC's diverse sub‐regions. Increased global market integration results in increased agricultural production and trade revenues for many LAC economies, driven by their evolving comparative advantages. Climate mitigation measures on CO2and non‐CO2greenhouse gases increase revenues due to increased agricultural prices from land competition and emissions abatement. The combined outcomes from both drivers are complex and sometimes non‐linear, highlighting the importance of understanding the interactions between multiple drivers. Our results show that increased agricultural production and trade opportunities, from either of the two drivers, pose significant trade‐offs that require careful multi‐sectoral planning, such as emissions reduction challenges, potential loss of livestock production when pursuing land‐based climate mitigation strategies, increased consumer expenditures, and changes in land‐use or water withdrawals, resulting in deforestation or water scarcity pressures. There is considerable heterogeneity in economic and environmental outcomes across LAC sub‐regions and agricultural commodities, illustrating the value of considering outcomes at finer scales.

    more » « less
  4. Abstract Scarce and unreliable urban water supply in many countries has caused municipal users to rely on transfers from rural wells via unregulated markets. Assessments of this pervasive water re-allocation institution and its impacts on aquifers, consumer equity and affordability are lacking. We present a rigorous coupled human–natural system analysis of rural-to-urban tanker water market supply and demand in Jordan, a quintessential example of a nation relying heavily on such markets, fed by predominantly illegal water abstractions. Employing a shadow-economic approach validated using multiple data types, we estimate that unregulated water sales exceed government licences 10.7-fold, equalling 27% of the groundwater abstracted above sustainable yields. These markets supply 15% of all drinking water at high prices, account for 52% of all urban water revenue and constrain the public supply system’s ability to recover costs. We project that household reliance on tanker water will grow 2.6-fold by 2050 under population growth and climate change. Our analysis suggests that improving the efficiency and equity of public water supply is needed to ensure water security while avoiding uncontrolled groundwater depletion by growing tanker markets. 
    more » « less
  5. Abstract

    Under the risk of drought, unreliable water supplies, and growing water demand, there is a growing need worldwide to explore alternative water sources to meet the demand for irrigation in agriculture and other outdoor activities. This paper estimates stocks, production capacities, economic costs, energy implications, and greenhouse gas (GHG) emissions associated with recycled water, desalinated brackish and seawater, and stormwater in California, the largest US state and the most significant fresh and processed food producer. The combined recycled water and stormwater supply could increase the share of alternative water use in urban land irrigation (parks and golf courses) from the current rate of 4.6% to 48% and in agriculture from 0.82% to 5.4% while increasing annual water costs by $900 million (1.8% of California’s annual agricultural revenue) and energy use by 710 GWh (0.28% of California’s annual electricity consumption). The annual supply of alternative water greatly exceeds the amount of water currently used in the food processing industry. In case studies of high-value agricultural produce, conventional water use was found to contribute approximately 17%, 12%, 4.1%, and 1.7% to the total GHG emissions of avocados, lemons, celery, and strawberries, respectively. However, materials (mostly packaging) contribute 46%, 26%, 47%, and 66%, and diesel use on farms 18%, 28%, and 14% for lemons, celery, and strawberries, respectively (data for avocados were not available). Switching to recycled water or stormwater would increase the total GHG emissions of one serving size of packaged strawberries, celery, lemons, and avocados by 3.0%, 7.8%, 11%, and 27%, respectively, desalinated brackish water by 23%, 58%, 150%, and 210%, and desalinated seawater by 35%, 88%, 230%, and 320%. Though switching to alternative water will increase costs, energy demand, and GHG emissions, they could be offset by turning to less environmentally damaging materials in agricultural production and sales (especially packaging).

    more » « less