- Award ID(s):
- 2016192
- PAR ID:
- 10361427
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Materials Au
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2694-2461
- Page Range / eLocation ID:
- p. 63-71
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The proliferation of energy-efficient light-emitting diode (LED) lighting has resulted in continued exposure to blue light, which has been linked to cataract formation, circadian disruption, and mood disorders. Blue light can be readily minimized in pursuit of “human-centric” lighting using a violet LED chip (λem ≈ 405 nm) downconverted by red, green, and blue-emitting phosphors. However, few phosphors efficiently convert violet light to blue light. This work reports a new phosphor that meets this demand. Na2MgPO4F:Eu2+ can be excited by a violet LED yielding an efficient, bright blue emission. The material also shows zero thermal quenching and has outstanding chromatic stability. The chemical robustness of the phosphor was also confirmed through prolonged exposure to water and high temperatures. A prototype device using a 405 nm LED, Na2MgPO4F:Eu2+, and a green and red-emitting phosphor produces a warm white light with a higher color rendering index than a commercially purchased LED light bulb while significantly reducing the blue component. These results demonstrate the capability of Na2MgPO4F:Eu2+ as a next-generation phosphor capable of advancing human-centric lighting.more » « less
-
Abstract NASICON‐type sodium vanadium phosphate (Na3V2(PO4)3, or NVP) cathode materials have great potential for fast charging and long cycling sodium‐ion batteries (SIBs) similar to lithium iron phosphate (LiFePO4, or LFP) cathode materials used in lithium‐ion batteries (LIBs). However, the cycle life and energy density in the full cell using NVP materials need to be significantly improved. This paper investigates the degradation mechanisms of NVP‐based SIBs and identifies the Na loss from the cathode to the anode solid electrolyte interphase (SEI) reactions as the main cause of capacity degradation. A new Na‐rich NVP cathode (e.g., Na4V2(PO4)3, or Na4VP) is developed to address the Na loss problem. Conventional NVP can be easily transformed into the Na4VP by a facile and fast chemical solution treatment (30 s). Na‐free‐anode Na4VP and hard carbon‐Na4VP full cells are assembled to evaluate the electrochemical properties of the Na‐rich NVP cathode. The Na4VP cathode provides excess Na to compensate for the Na loss, resulting much longer cycle life in the full cells (>400 cycles) and a high specific energy and power density. Good low‐temperature performance is also observed.