skip to main content


Title: A method for controlling the magnetic field near a superconducting boundary in the ARIADNE axion experiment
Abstract

The QCD axion is a particle postulated to exist since the 1970s to explain the strong-CP problem in particle physics. It could also account for all of the observed dark matter in the Universe. The axion resonant interaction detection experiment (ARIADNE) intends to detect the QCD axion by sensing the fictitious ‘magnetic field’ created by its coupling to spin. Short-range axion-mediated interactions can occur between a sample of laser-polarized3He nuclear spins and an unpolarized source-mass sprocket. The experiment must be sensitive to magnetic fields below the 10−19T level to achieve its design sensitivity, necessitating tight control of the experiment’s magnetic environment. We describe a method for controlling three aspects of that environment which would otherwise limit the experimental sensitivity. Firstly, a system of superconducting magnetic shielding is described to screen ordinary magnetic noise from the sample volume at the 108level, which should be sufficient to reduce the contribution of Johnson noise in the sprocket-shaped source mass, expected to be at the 10−12T/Hzlevel, to below the threshold for signal detection. Secondly, a method for reducing magnetic field gradients within the sample up to 102times is described, using a simple and cost-effective design geometry. Thirdly, a novel coil design is introduced which allows the generation of fields similar to those produced by Helmholtz coils in regions directly abutting superconducting boundaries. This method allows the nuclear Larmor frequency of the sample to be tuned to match the axion field modulation frequency set by the sprocket rotation. Finally, we experimentally investigate the magnetic shielding factor of sputtered thin-film superconducting niobium on quartz substrates for various geometries and film thicknesses relevant for the ARIADNE axion experiment using SQUID magnetometry. The methods may be generally useful for magnetic field control near superconducting boundaries in other experiments where similar considerations apply.

 
more » « less
Award ID(s):
1806671 2111544 2111347
NSF-PAR ID:
10361444
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Quantum Science and Technology
Volume:
7
Issue:
1
ISSN:
2058-9565
Page Range / eLocation ID:
Article No. 014002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate the stellar mass–black hole mass (*BH) relation with type 1 active galactic nuclei (AGNs) down toBH=107M, corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz= 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs withBHranging from 107–1010Mthat are measured with single-epoch virial method using Civemission lines detected in the HETDEX spectra.*of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALEspectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the*BHrelation covering the unexplored low-mass ranges ofBH107108M, and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic*BHrelation atz∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime ofBH107108M. Our*BHrelation is inconsistent with theBHsuppression at the low-*regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations.

     
    more » « less
  2. Abstract

    Fueling and feedback couple supermassive black holes (SMBHs) to their host galaxies across many orders of magnitude in spatial and temporal scales, making this problem notoriously challenging to simulate. We use a multi-zone computational method based on the general relativistic magnetohydrodynamic (GRMHD) code KHARMA that allows us to span 7 orders of magnitude in spatial scale, to simulate accretion onto a non-spinning SMBH from an external medium with a Bondi radius ofRB≈ 2 × 105GM/c2, whereMis the SMBH mass. For the classic idealized Bondi problem, spherical gas accretion without magnetic fields, our simulation results agree very well with the general relativistic analytic solution. Meanwhile, when the accreting gas is magnetized, the SMBH magnetosphere becomes saturated with a strong magnetic field. The density profile varies as ∼r−1rather thanr−3/2and the accretion rateṀis consequently suppressed by over 2 orders of magnitude below the Bondi rateṀB. We find continuous energy feedback from the accretion flow to the external medium at a level of102Ṁc25×105ṀBc2. Energy transport across these widely disparate scales occurs via turbulent convection triggered by magnetic field reconnection near the SMBH. Thus, strong magnetic fields that accumulate on horizon scales transform the flow dynamics far from the SMBH and naturally explain observed extremely low accretion rates compared to the Bondi rate, as well as at least part of the energy feedback.

     
    more » « less
  3. Abstract

    We report on scalable heterointegration of superconducting electrodes and epitaxial semiconductor quantum dots (QDs) on strong piezoelectric and optically nonlinear lithium niobate. The implemented processes combine the sputter-deposited thin film superconductor niobium nitride and III–V compound semiconductor membranes onto the host substrate. The superconducting thin film is employed as a zero-resistivity electrode material for a surface acoustic wave resonator with internal quality factorsQ17000representing a three-fold enhancement compared to identical devices with normal conducting electrodes. Superconducting operation of400MHzresonators is achieved to temperaturesT>7Kand electrical radio frequency powersPrf>+9dBm. Heterogeneously integrated single QDs couple to the resonant phononic field of the surface acoustic wave resonator operated in the superconducting regime. Position and frequency selective coupling mediated by deformation potential coupling is validated using time-integrated and time-resolved optical spectroscopy. Furthermore, acoustoelectric charge state control is achieved in a modified device geometry harnessing large piezoelectric fields inside the resonator. The hybrid QD—surface acoustic wave resonator can be scaled to higher operation frequencies and smaller mode volumes for quantum phase modulation and transduction between photons and phonons via the QD. Finally, the employed materials allow for the realization of other types of optoelectronic devices, including superconducting single photon detectors and integrated photonic and phononic circuits.

     
    more » « less
  4. Abstract

    We report the first star formation history study of the Milky Ways nuclear star cluster (NSC), which includes observational constraints from a large sample of stellar metallicity measurements. These metallicity measurements were obtained from recent surveys from Gemini and the Very Large Telescope of 770 late-type stars within the central 1.5 pc. These metallicity measurements, along with photometry and spectroscopically derived temperatures, are forward modeled with a Bayesian inference approach. Including metallicity measurements improves the overall fit quality, as the low-temperature red giants that were previously difficult to constrain are now accounted for, and the best fit favors a two-component model. The dominant component contains 93% ± 3% of the mass, is metal-rich ([M/H]¯0.45), and has an age of52+3Gyr, which is ∼3 Gyr younger than earlier studies with fixed (solar) metallicity; this younger age challenges coevolutionary models in which the NSC and supermassive black holes formed simultaneously at early times. The minor population component has low metallicity ([M/H]¯1.1) and contains ∼7% of the stellar mass. The age of the minor component is uncertain (0.1–5 Gyr old). Using the estimated parameters, we infer the following NSC stellar remnant population (with ∼18% uncertainty): 1.5 × 105neutron stars, 2.5 × 105stellar-mass black holes (BHs), and 2.2 × 104BH–BH binaries. These predictions result in 2–4 times fewer neutron stars compared to earlier predictions that assume solar metallicity, introducing a possible new path to understand the so-called “missing-pulsar problem”. Finally, we present updated predictions for the BH–BH merger rates (0.01–3 Gpc−3yr−1).

     
    more » « less
  5. Abstract

    We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizationsσ≲ 10−4and pair-loading factorsZ±≲ 10 are studied, whereZ±is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσexceeds a critical valueσLthat decreases withZ±. AtσσLthe shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease withZ±, leading to lowerσL. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales asE¯eZ±+11. (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low asσ≈ 5 × 10−6. The ions then become essentially thermal with mean energyE¯i, while electrons form a nonthermal tail, extending fromEZ±+11E¯itoE¯i. Whenσ= 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here, the maximum energy of the nonthermal ions and electrons keeps growing over the duration of the simulation. Alongside the simulations, we develop theoretical estimates consistent with the numerical results. Our findings have important implications for models of early gamma-ray burst afterglows.

     
    more » « less