skip to main content


Title: Optical estimation of unitary Gaussian processes without phase reference using Fock states
Abstract

Since a general Gaussian process is phase-sensitive, a stable phase reference is required to take advantage of this feature. When the reference is missing, either due to the volatile nature of the measured sample or the measurement’s technical limitations, the resulting process appears as random in phase. Under this condition, we consider two single-mode Gaussian processes, displacement and squeezing. We show that these two can be efficiently estimated using photon number states and photon number resolving detectors. For separate estimation of displacement and squeezing, the practical estimation errors for hundreds of probes’ ensembles can saturate the Cramér–Rao bound even for arbitrary small values of the estimated parameters and under realistic losses. The estimation of displacement with Fock states always outperforms estimation using Gaussian states with equivalent energy and optimal measurement. For estimation of squeezing, Fock states outperform Gaussian methods, but only when their energy is large enough. Finally, we show that Fock states can also be used to estimate the displacement and the squeezing simultaneously.

 
more » « less
NSF-PAR ID:
10361467
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
22
Issue:
12
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 123039
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to a wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs. 
    more » « less
  2. Abstract

    Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise.

     
    more » « less
  3. Hemmer, Philip R. ; Migdall, Alan L. (Ed.)
    Recent proposals suggest that distributed single photons serving as a ‘non-local oscillator’ can outperform coherent states as a phase reference for long-baseline interferometric imaging of weak sources [1,2]. Such nonlocal quantum states distributed between telescopes can, in-principle, surpass the limitations of conventional interferometric-based astronomical imaging approaches for very-long baselines such as: signal-to-noise, shot noise, signal loss, and faintness of the imaged objects. Here we demonstrate in a table-top experiment, interference between a nonlocal oscillator generated by equal-path splitting of an idler photon from a pulsed, separable, parametric down conversion process and a spectrally single-mode, quasi-thermal source. We compare the single-photon nonlocal oscillator to a more conventional local oscillator with uncertain photon number. Both methods enabled reconstruction of the source’s Gaussian spatial distribution by measurement of the interference visibility as a function of baseline separation and then applying the van Cittert-Zernike theorem [3,4]. In both cases, good qualitative agreement was found with the reconstructed source width and the known source width as measured using a camera. We also report an increase of signal-to-noise per ‘faux’ stellar photon detected when heralding the idler photon. 1593 heralded (non-local oscillator) detection events led to a maximum visibility of ~17% compared to the 10412 unheralded (classical local oscillator) detection events, which gave rise to a maximum visibility of ~10% – the first instance of quantum-enhanced sensing in this context. 
    more » « less
  4. The development of useful photon-photon interactions can trigger numerous breakthroughs in quantum information science, however, this has remained a considerable challenge spanning several decades. Here, we demonstrate the first room-temperature implementation of large phase shifts (≈π) on a single-photon level probe pulse (1.5μs) triggered by a simultaneously propagating few-photon-level signal field. This process is mediated by Rb87 vapor in a double-Λ atomic configuration. We use homodyne tomography to obtain the quadrature statistics of the phase-shifted quantum fields and perform maximum-likelihood estimation to reconstruct their quantum state in the Fock state basis. For the probe field, we have observed input-output fidelities higher than 90% for phase-shifted output states, and high overlap (over 90%) with a theoretically perfect coherent state. Our noise-free, four-wave-mixing-mediated photon-photon interface is a key milestone toward developing quantum logic and nondemolition photon detection using schemes such as coherent photon conversion. 
    more » « less
  5. Abstract

    The field of quantum metrology seeks to apply quantum techniques and/or resources to classical sensing approaches with the goal of enhancing the precision in the estimation of a parameter beyond what can be achieved with classical resources. Theoretically, the fundamental minimum uncertainty in the estimation of a parameter for a given probing state is bounded by the quantum Cramér-Rao bound. From a practical perspective, it is necessary to find physical measurements that can saturate this fundamental limit and to show experimentally that it is possible to perform measurements with the required precision to do so. Here we perform experiments that saturate the quantum Cramér-Rao bound for transmission estimation over a wide range of transmissions when probing the system under study with a continuous wave bright two-mode squeezed state. To properly take into account the imperfections in the generation of the quantum state, we extend our previous theoretical results to incorporate the measured properties of the generated quantum state. For our largest transmission level of 84%, we show a 62% reduction over the optimal classical protocol in the variance in transmission estimation when probing with a bright two-mode squeezed state with −8 dB of intensity-difference squeezing. Given that transmission estimation is an integral part of many sensing protocols, such as plasmonic sensing, spectroscopy, calibration of the quantum efficiency of detectors, etc., the results presented promise to have a significant impact on a number of applications in various fields of research.

     
    more » « less