skip to main content


Title: Optical estimation of unitary Gaussian processes without phase reference using Fock states
Abstract

Since a general Gaussian process is phase-sensitive, a stable phase reference is required to take advantage of this feature. When the reference is missing, either due to the volatile nature of the measured sample or the measurement’s technical limitations, the resulting process appears as random in phase. Under this condition, we consider two single-mode Gaussian processes, displacement and squeezing. We show that these two can be efficiently estimated using photon number states and photon number resolving detectors. For separate estimation of displacement and squeezing, the practical estimation errors for hundreds of probes’ ensembles can saturate the Cramér–Rao bound even for arbitrary small values of the estimated parameters and under realistic losses. The estimation of displacement with Fock states always outperforms estimation using Gaussian states with equivalent energy and optimal measurement. For estimation of squeezing, Fock states outperform Gaussian methods, but only when their energy is large enough. Finally, we show that Fock states can also be used to estimate the displacement and the squeezing simultaneously.

 
more » « less
PAR ID:
10361467
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
22
Issue:
12
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 123039
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a mechanism that harnesses extremely weak Kerr-type nonlinearities in a single driven cavity to deterministically generate single-photon Fock states and more general photon-blockaded states. Our method is effective even for nonlinearities that are orders-of-magnitude smaller than photonic loss. It is also completely distinct from so-called unconventional photon blockade mechanisms, as the generated states are non-Gaussian, exhibit a sharp cutoff in their photon number distribution, and can be arbitrarily close to a single-photon Fock state. Our ideas require only standard linear and parametric drives and are hence compatible with a variety of different photonic platforms. 
    more » « less
  2. The development of useful photon-photon interactions can trigger numerous breakthroughs in quantum information science, however, this has remained a considerable challenge spanning several decades. Here, we demonstrate the first room-temperature implementation of large phase shifts (≈π) on a single-photon level probe pulse (1.5μs) triggered by a simultaneously propagating few-photon-level signal field. This process is mediated by Rb87 vapor in a double-Λ atomic configuration. We use homodyne tomography to obtain the quadrature statistics of the phase-shifted quantum fields and perform maximum-likelihood estimation to reconstruct their quantum state in the Fock state basis. For the probe field, we have observed input-output fidelities higher than 90% for phase-shifted output states, and high overlap (over 90%) with a theoretically perfect coherent state. Our noise-free, four-wave-mixing-mediated photon-photon interface is a key milestone toward developing quantum logic and nondemolition photon detection using schemes such as coherent photon conversion. 
    more » « less
  3. Abstract

    Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise.

     
    more » « less
  4. null (Ed.)
    Estimation of the properties of a physical system with minimal uncertainty is a central task in quantum metrology. Optical phase estimation is at the center of many metrological tasks where the value of a physical parameter is mapped to the phase of an electromagnetic field and single-shot measurements of this phase are necessary. While there are measurements able to estimate the phase of light in a single shot with small uncertainties, demonstrations of near-optimal single-shot measurements for an unknown phase of a coherent state remain elusive. Here, we propose and demonstrate strategies for single-shot measurements for ab initio phase estimation of coherent states that surpass the sensitivity limit of heterodyne measurement and approach the Cramer-Rao lower bound for coherent states. These single-shot estimation strategies are based on real-time optimization of coherent displacement operations, single photon counting with photon number resolution, and fast feedback. We show that our demonstration of these optimized estimation strategies surpasses the heterodyne limit for a wide range of optical powers without correcting for detection efficiency with a moderate number of adaptive measurement steps. This is, to our knowledge, the most sensitive single-shot measurement of an unknown phase encoded in optical coherent states. 
    more » « less
  5. Abstract Physical realizations of the canonical phase measurement for the optical phase are unknown. Single-shot phase estimation, which aims to determine the phase of an optical field in a single shot, is critical in quantum information processing and metrology. Here we present a family of strategies for single-shot phase estimation of coherent states based on adaptive non-Gaussian, photon counting, measurements with coherent displacements that maximize information gain as the measurement progresses, which have higher sensitivities over the best known adaptive Gaussian strategies. To gain understanding about their fundamental characteristics and demonstrate their superior performance, we develop a comprehensive statistical analysis based on Bayesian optimal design of experiments, which provides a natural description of these non-Gaussian strategies. This mathematical framework, together with numerical analysis and Monte Carlo methods, allows us to determine the asymptotic limits in sensitivity of strategies based on photon counting designed to maximize information gain, which up to now had been a challenging problem. Moreover, we show that these non-Gaussian phase estimation strategies have the same functional form as the canonical phase measurement in the asymptotic limit differing only by a scaling factor, thus providing the highest sensitivity among physically-realizable measurements for single-shot phase estimation of coherent states known to date. This work shines light into the potential of optimized non-Gaussian measurements based on photon counting for optical quantum metrology and phase estimation. 
    more » « less