skip to main content


Title: Focal neural perturbations reshape low-dimensional trajectories of brain activity supporting cognitive performance
Abstract

The emergence of distributed patterns of neural activity supporting brain functions and behavior can be understood by study of the brain’s low-dimensional topology. Functional neuroimaging demonstrates that brain activity linked to adaptive behavior is constrained to low-dimensional manifolds. In human participants, we tested whether these low-dimensional constraints preserve working memory performance following local neuronal perturbations. We combined multi-session functional magnetic resonance imaging, non-invasive transcranial magnetic stimulation (TMS), and methods translated from the fields of complex systems and computational biology to assess the functional link between changes in local neural activity and the reshaping of task-related low dimensional trajectories of brain activity. We show that specific reconfigurations of low-dimensional trajectories of brain activity sustain effective working memory performance following TMS manipulation of local activity on, but not off, the space traversed by these trajectories. We highlight an association between the multi-scale changes in brain activity underpinning cognitive function.

 
more » « less
NSF-PAR ID:
10361513
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent shifts in the understanding of how the mind and brain retain information in working memory (WM) call for revision to traditional theories. Evidence of dynamic, “activity-silent,” short-term retention processes diverges from conventional models positing that information is always retained in WM by sustained neural activity in buffers. Such evidence comes from machine-learning methods that can decode patterns of brain activity and the simultaneous administration of transcranial magnetic stimulation (TMS) to causally manipulate brain activity in specific areas and time points. TMS can “ping” brain areas to both reactivate latent representations retained in WM and affect memory performance. On the basis of these findings, I argue for a supplement to sustained retention mechanisms. Brain-decoding methods also reveal that dynamic levels of representational codes are retained in WM, and these vary according to task context, from perceptual (sensory) codes in posterior areas to abstract, recoded representations distributed across frontoparietal regions. A dynamic-processing model of WM is advanced to account for the overall pattern of results. 
    more » « less
  2. Objective

    We examine the spatiotemporal dynamics of neural activity and its correlates in heart rate and its variability (HR/HRV) during a fatiguing visuospatial working memory task.

    Background

    The neural and physiological drivers of fatigue are complex, coupled, and poorly understood. Investigations that combine the fidelity of neural indices and the field-readiness of physiological measures can facilitate measurements of fatigue states in operational settings.

    Method

    Sixteen healthy adults, balanced by sex, completed a 60-minute fatiguing visuospatial working memory task. Changes in task performance, subjective measures of effort and fatigue, cerebral hemodynamics, and HR/HRV were analyzed. Peak brain activation, functional and effective connections within relevant brain networks were contrasted against spectral and temporal features of HR/HRV.

    Results

    Task performance elicited increased neural activation in regions responsible for maintaining working memory capacity. With the onset of time-on-task effects, resource utilization was seen to increase beyond task-relevant networks. Over time, functional connections in the prefrontal cortex were seen to weaken, with changes in the causal relationships between key regions known to drive working memory. HR/HRV indices were seen to closely follow activity in the prefrontal cortex.

    Conclusion

    This investigation provided a window into the neurophysiological underpinnings of working memory under the time-on-task effect. HR/HRV was largely shown to mirror changes in cortical networks responsible for working memory, therefore supporting the possibility of unobtrusive state recognition under ecologically valid conditions.

    Applications

    Findings here can inform the development of a fieldable index for cognitive fatigue.

     
    more » « less
  3. null (Ed.)
    Our decisions often depend on multiple sensory experiences separated by time delays. The brain can remember these experiences and, simultaneously, estimate the timing between events. To understand the mechanisms underlying working memory and time encoding, we analyze neural activity recorded during delays in four experiments on nonhuman primates. To disambiguate potential mechanisms, we propose two analyses, namely, decoding the passage of time from neural data and computing the cumulative dimensionality of the neural trajectory over time. Time can be decoded with high precision in tasks where timing information is relevant and with lower precision when irrelevant for performing the task. Neural trajectories are always observed to be low-dimensional. In addition, our results further constrain the mechanisms underlying time encoding as we find that the linear “ramping” component of each neuron’s firing rate strongly contributes to the slow timescale variations that make decoding time possible. These constraints rule out working memory models that rely on constant, sustained activity and neural networks with high-dimensional trajectories, like reservoir networks. Instead, recurrent networks trained with backpropagation capture the time-encoding properties and the dimensionality observed in the data. 
    more » « less
  4. Abstract

    Complex human cognition arises from the integrated processing of multiple brain systems. However, little is known about how brain systems and their interactions might relate to, or perhaps even explain, human cognitive capacities. Here, we address this gap in knowledge by proposing a mechanistic framework linking frontoparietal system activity, default mode system activity, and the interactions between them, with individual differences in working memory capacity. We show that working memory performance depends on the strength of functional interactions between the frontoparietal and default mode systems. We find that this strength is modulated by the activation of two newly described brain regions, and demonstrate that the functional role of these systems is underpinned by structural white matter. Broadly, our study presents a holistic account of how regional activity, functional connections, and structural linkages together support integrative processing across brain systems in order for the brain to execute a complex cognitive process.

     
    more » « less
  5. null (Ed.)
    Abstract A diverse set of white matter connections supports seamless transitions between cognitive states. However, it remains unclear how these connections guide the temporal progression of large-scale brain activity patterns in different cognitive states. Here, we analyze the brain’s trajectories across a set of single time point activity patterns from functional magnetic resonance imaging data acquired during the resting state and an n-back working memory task. We find that specific temporal sequences of brain activity are modulated by cognitive load, associated with age, and related to task performance. Using diffusion-weighted imaging acquired from the same subjects, we apply tools from network control theory to show that linear spread of activity along white matter connections constrains the probabilities of these sequences at rest, while stimulus-driven visual inputs explain the sequences observed during the n-back task. Overall, these results elucidate the structural underpinnings of cognitively and developmentally relevant spatiotemporal brain dynamics. 
    more » « less