skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Estimated Amounts and Rates of Carbon Mobilized by Landsliding in Old‐Growth Temperate Forests of SE Alaska
Abstract

Landslides, a forest disturbance, mobilize carbon (C) sequestered in vegetation and soils. Mobilized C is deposited either onto hillslopes or into the water, sequestering C from and releasing C to the atmosphere at different time scales. The C‐dense old‐growth temperate forests of SE Alaska are a unique location to quantify C mobilization rate by frequent landslides that often evolve into saturated moving masses known as debris flows. In this study, the amount of C mobilized by debris flows over historic time scales was estimated by combining a landslide inventory with maps of modeled biomass and soil carbon. We analyzed SE Alaskan landslides over a 55‐year period where a total of 4.69 ± 0.21 MtC was mobilized, an average rate of 2.5 tC km−2 yr−1. A single event in August 2015 mobilized 57,651 ± 3,266 tC, an average of 63 tC km−2. Depositional fate was inferred using two methods, a standard stream intersection analysis and a second novel approach using simulated debris flow deposition modeling calibrated to the study area. Approximately 60% of debris flow deposits intersected the stream network (9% into mainstem channels, 91% into small tributaries), consistent with long‐term modeled connectivity, suggesting that debris flows are likely to contribute to globally significant amounts of C buried in local fjord sediments. Our results are consistent with an emerging consensus that landslide disturbances that mobilize organic carbon may play an important role in the global carbon cycle over geologic time, with coastal temperate forests being hotspots of potential carbon sequestration.

 
more » « less
Award ID(s):
2025726 1711986
NSF-PAR ID:
10361649
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
11
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Landslides influence the global carbon (C) cycle by facilitating transfer of terrestrial C in biomass and soils to offshore depocenters and redistributing C within the landscape, affecting the terrestrial C reservoir itself. How landslides affect terrestrial C stocks is rarely quantified, so we derive a model that couples stochastic landslides with terrestrial C dynamics, calibrated to temperate rainforests in southeast Alaska, United States. Modeled landslides episodically transfer C from scars to deposits and destroy living biomass. After a landslide, total C stocks on the scar recover, while those on the deposit either increase (in the case of living biomass) or decrease while remaining higher than if no landslide had occurred (in the case of dead biomass and soil C). Specifically, modeling landslides in a 29.9 km2watershed at the observed rate of 0.004 landslides km−2 yr−1decreases average living biomass C density by 0.9 tC ha−1(a relative amount of 0.4%), increases dead biomass C by 0.3 tC ha−1(0.6%), and increases soil C by 3.4 tC ha−1(0.8%) relative to a base case with no landslides. The net effect is a small increase in total terrestrial C stocks of 2.8 tC ha−1(0.4%). The size of this boost increases with landslide frequency, reaching 6.5% at a frequency of 0.1 landslides km−2 yr−1. If similar dynamics occur in other landslide‐prone regions of the globe, landslides should be a net C sink and a natural buffer against increasing atmospheric CO2levels, which are forecast to increase landslide‐triggering precipitation events.

     
    more » « less
  2. Abstract

    Bedrock landsliding, including the formation of landslide dams, is a predominant geomorphic process in steep landscapes. Clarifying the importance of hydrologic and seismic mechanisms for triggering deep‐seated landslides remains an ongoing effort, and formulation of geomorphic metrics that predict dam preservation is crucial for quantifying secondary landslide hazards. Here, we identify >200 landslide‐dammed lakes in western Oregon and utilize dendrochronology and enhanced14C dating (“wiggle matching”) of “ghost forests” to establish slope failure timing at 20 sites. Our dated landslide dataset reveals bedrock landsliding has been common since the last Cascadia Subduction Zone earthquake in January 1700 AD. Our study does not reveal landslides that date to 1700 AD. Rather, we observe temporal clustering ofat leastfour landslides in the winter of 1889/1890 AD, coincident with a series of atmospheric rivers that generated one of the largest regionally recorded floods. We use topographic and field analyses to assess the relation between dam preservation and topographic characteristics of the impounded valleys. In contrast to previous studies, we do not observe systematic scaling between dam size and upstream drainage area, though dam stability indices for our sites correspond with “stable” dams elsewhere. Notably, we observe that dams are preferentially preserved at drainage areas of ∼1.5 to 13 km2and valley widths of ∼25 to 80 m, which may reflect the reduced downstream influence of debris flows and the accumulation of mature conifer trees upstream from landslide‐dammed lake outlets. We suggest that wood accumulation upstream of landslide dams tempers large stream discharges, thus inhibiting dam incision.

     
    more » « less
  3. Abstract

    Post‐seismic debris flows are an important hazard following large earthquakes, propagating destruction downstream from hillslopes where coseismic landslides occur and extending damage for years after shaking stops. Data sets of post‐seismic debris flows are necessary to predict initiation and runout characteristics but are presently scarce. We used satellite imagery supplemented by field observations to compile an inventory of >1,000 debris flows associated with the 2015 Gorkha Earthquake in Nepal. We identified two distinct debris flow types: (1) Material from a coseismic landslide was remobilized in a steep channel during a later monsoon; and (2) a new post‐seismic hillslope failure occurred in saturated conditions and became fluidized and channelized. Runout distance was constrained by channel confluences and may be related to confluence geometry. Unstable landslide debris was largely flushed from steep channels during the first monsoon following the earthquake, and the rate of new hillslope failures tailed off over a few years.

     
    more » « less
  4. Atmospheric and oceanic warming over the past century have driven rapid glacier thinning and retreat, destabilizing hillslopes and increasing the frequency of landslides. The impact of these landslides on glacier dynamics and resultant secondary landslide hazards are not fully understood. We investigated how a 262 ± 77 × 106 m3 landslide affected the flow of Amalia Glacier, Chilean Patagonia. Despite being one of the largest recorded landslides in a glaciated region, it emplaced little debris onto the glacier surface. Instead, it left a series of landslide-perpendicular ridges, landslide-parallel fractures, and an apron of ice debris—with blocks as much as 25 m across. Our observations suggest that a deep-seated failure of the mountainside impacted the glacier flank, propagating brittle deformation through the ice and emplacing the bulk of the rock mass below the glacier. The landslide triggered a brief downglacier acceleration of Amalia Glacier followed by a slowdown of as much as 60% of the pre-landslide speed and increased suspended-sediment concentrations in the fjord. These results highlight that landslides may induce widespread and long-lasting disruptions to glacier dynamics. 
    more » « less
  5. Tens of thousands of landslides were generated over 10,000 km2 of North Canterbury and Marlborough as a consequence of the 14 November 2016, Mw7.8 Kaikōura Earthquake. The most intense landslide damage was concentrated in 3500 km2 around the areas of fault rupture. Given the sparsely populated area affected by landslides, only a few homes were impacted and there were no recorded deaths due to landslides. Landslides caused major disruption with all road and rail links with Kaikōura being severed. The landslides affecting State Highway 1 (the main road link in the South Island of New Zealand) and the South Island main trunk railway extended from Ward in Marlborough all the way to the south of Oaro in North Canterbury. The majority of landslides occurred in two geological and geotechnically distinct materials reflective of the dominant rock types in the affected area. In the Neogene sedimentary rocks (sandstones, limestones and siltstones) of the Hurunui District, North Canterbury and around Cape Campbell in Marlborough, first-time and reactivated rock-slides and rock-block slides were the dominant landslide type. These rocks also tend to have rock material strength values in the range of 5-20 MPa. In the Torlesse ‘basement’ rocks (greywacke sandstones and argillite) of the Kaikōura Ranges, first-time rock and debris avalanches were the dominant landslide type. These rocks tend to have material strength values in the range of 20-50 MPa. A feature of this earthquake is the large number (more than 200) of valley blocking landslides it generated. This was partly due to the steep and confined slopes in the area and the widely distributed strong ground shaking. The largest landslide dam has an approximate volume of 12(±2) M m3 and the debris from this travelled about 2.7 km2 downslope where it formed a dam blocking the Hapuku River. The long-term stability of cracked slopes and landslide dams from future strong earthquakes and large rainstorms are an ongoing concern to central and local government agencies responsible for rebuilding homes and infrastructure. A particular concern is the potential for debris floods to affect downstream assets and infrastructure should some of the landslide dams breach catastrophically. At least twenty-one faults ruptured to the ground surface or sea floor, with these surface ruptures extending from the Emu Plain in North Canterbury to offshore of Cape Campbell in Marlborough. The mapped landslide distribution reflects the complexity of the earthquake rupture. Landslides are distributed across a broad area of intense ground shaking reflective of the elongate area affected by fault rupture, and are not clustered around the earthquake epicentre. The largest landslides triggered by the earthquake are located either on or adjacent to faults that ruptured to the ground surface. Surface faults may provide a plane of weakness or hydrological discontinuity and adversely oriented surface faults may be indicative of the location of future large landslides. Their location appears to have a strong structural geological control. Initial results from our landslide investigations suggest predictive models relying only on ground-shaking estimates underestimate the number and size of the largest landslides that occurred. 
    more » « less