skip to main content


Title: MESA Models with Magnetic Braking
Abstract

Two magnetic braking models are implemented inMESAfor use in theMISTstellar model grids. Stars less than about 1.3 solar masses are observed to spin down over time through interaction with their magnetized stellar winds (i.e., magnetic braking). This is the basis for gyrochronology and is fundamental to the evolution of lower-mass stars. The detailed physics behind magnetic braking are uncertain, as are 1D stellar evolution models. Thus, we calibrate our models and compare to data from open clusters. Each braking model tested here is capable of reproducing aspects of the data, with important distinctions; neither fully accounts for the observations. The Matt et al. prescription matches the slowly rotating stars observed in open clusters but tends to overestimate the presence of rapidly rotating stars. The Garraffo et al. prescription often produces too much angular momentum loss to accurately match the observed slow sequence for lower-mass stars but reproduces the bimodal nature of slowly and rapidly rotating stars observed in open clusters fairly well. Our models additionally do not reproduce the observed solar lithium depletion, corroborating previous findings that effects other than rotation may be important. We find additional evidence that some level of mass dependency may be missing in these braking models to match the rotation periods observed in clusters older than 1 Gyr better.

 
more » « less
NSF-PAR ID:
10361706
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
912
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 65
Size(s):
Article No. 65
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    During the first half of main-sequence lifetimes, the evolution of rotation and magnetic activity in solar-type stars appears to be strongly coupled. Recent observations suggest that rotation rates evolve much more slowly beyond middle-age, while stellar activity continues to decline. We aim to characterize this mid-life transition by combining archival stellar activity data from the Mount Wilson Observatory with asteroseismology from the Transiting Exoplanet Survey Satellite (TESS). For two stars on opposite sides of the transition (88 Leo and ρ CrB), we independently assess the mean activity levels and rotation periods previously reported in the literature. For the less active star (ρ CrB), we detect solar-like oscillations from TESS photometry, and we obtain precise stellar properties from asteroseismic modeling. We derive updated X-ray luminosities for both stars to estimate their mass-loss rates, and we use previously published constraints on magnetic morphology to model the evolutionary change in magnetic braking torque. We then attempt to match the observations with rotational evolution models, assuming either standard spin-down or weakened magnetic braking. We conclude that the asteroseismic age of ρ CrB is consistent with the expected evolution of its mean activity level, and that weakened braking models can more readily explain its relatively fast rotation rate. Future spectropolarimetric observations across a range of spectral types promise to further characterize the shift in magnetic morphology that apparently drives this mid-life transition in solar-type stars. 
    more » « less
  2. ABSTRACT The time evolution of angular momentum and surface rotation of massive stars are strongly influenced by fossil magnetic fields via magnetic braking. We present a new module containing a simple, comprehensive implementation of such a field at the surface of a massive star within the Modules for Experiments in Stellar Astrophysics (mesa) software instrument. We test two limiting scenarios for magnetic braking: distributing the angular momentum loss throughout the star in the first case, and restricting the angular momentum loss to a surface reservoir in the second case. We perform a systematic investigation of the rotational evolution using a grid of OB star models with surface magnetic fields (M⋆ = 5–60 M⊙, Ω/Ωcrit = 0.2–1.0, Bp = 1–20 kG). We then employ a representative grid of B-type star models (M⋆ = 5, 10, 15 M⊙, Ω/Ωcrit = 0.2, 0.5, 0.8, Bp = 1, 3, 10, 30 kG) to compare to the results of a recent self-consistent analysis of the sample of known magnetic B-type stars. We infer that magnetic massive stars arrive at the zero-age main sequence (ZAMS) with a range of rotation rates, rather than with one common value. In particular, some stars are required to have close-to-critical rotation at the ZAMS. However, magnetic braking yields surface rotation rates converging to a common low value, making it difficult to infer the initial rotation rates of evolved, slowly rotating stars. 
    more » « less
  3. ABSTRACT

    Magnetic fields can drastically change predictions of evolutionary models of massive stars via mass-loss quenching, magnetic braking, and efficient angular momentum transport, which we aim to quantify in this work. We use the mesa software instrument to compute an extensive main-sequence grid of stellar structure and evolution models, as well as isochrones, accounting for the effects attributed to a surface fossil magnetic field. The grid is densely populated in initial mass (3–60 M⊙), surface equatorial magnetic field strength (0–50 kG), and metallicity (representative of the Solar neighbourhood and the Magellanic Clouds). We use two magnetic braking and two chemical mixing schemes and compare the model predictions for slowly rotating, nitrogen-enriched (‘Group 2’) stars with observations in the Large Magellanic Cloud. We quantify a range of initial field strengths that allow for producing Group 2 stars and find that typical values (up to a few kG) lead to solutions. Between the subgrids, we find notable departures in surface abundances and evolutionary paths. In our magnetic models, chemical mixing is always less efficient compared to non-magnetic models due to the rapid spin-down. We identify that quasi-chemically homogeneous main sequence evolution by efficient mixing could be prevented by fossil magnetic fields. We recommend comparing this grid of evolutionary models with spectropolarimetric and spectroscopic observations with the goals of (i) revisiting the derived stellar parameters of known magnetic stars, and (ii) observationally constraining the uncertain magnetic braking and chemical mixing schemes.

     
    more » « less
  4. Abstract

    The zero-age main sequence (ZAMS) is a critical phase for stellar angular momentum evolution, as stars transition from contraction-dominated spin-up to magnetic wind-dominated spin-down. We present the first robust observational constraints on rotation for FGK stars at ≈40 Myr. We have analyzed TESS light curves for 1410 members of five young open clusters with ages between 25 and 55 Myr: IC 2391, IC 2602, NGC 2451A, NGC 2547, and Collinder 135. In total, we measure 868 rotation periods, including 96 new, high-quality periods for stars around 1M. This is an increase of ten times the existing literature sample at the ZAMS. We then use theτ2method to compare our data to models for stellar angular momentum evolution. Although the ages derived from these rotation models do not match isochronal ages, we show that these observations can clearly discriminate between different models for stellar wind torques. Finally,τ2fits indicate that magnetic braking and/or internal angular momentum transport significantly impact rotational evolution even on the pre-main sequence.

     
    more » « less
  5. Most previous efforts to calibrate how rotation and magnetic activity depend on stellar age and mass have relied on observations of clusters, where isochrones from stellar evolution models are used to determine the properties of the ensemble. Asteroseismology employs similar models to measure the properties of an individual star by matching its normal modes of oscillation, yielding the stellar age and mass with high precision. We use 27 days of photometry from the {\it Transiting Exoplanet Survey Satellite} (TESS) to characterize solar-like oscillations in the G8 subgiant of the 94~Aqr triple system. The resulting stellar properties, when combined with a reanalysis of 35 years of activity measurements from the Mount Wilson HK project, allow us to probe the evolution of rotation and magnetic activity in the system. The asteroseismic age of the subgiant agrees with a stellar isochrone fit, but the rotation period is much shorter than expected from standard models of angular momentum evolution. We conclude that weakened magnetic braking may be needed to reproduce the stellar properties, and that evolved subgiants in the hydrogen shell-burning phase can reinvigorate large-scale dynamo action and briefly sustain magnetic activity cycles before ascending the red giant branch. 
    more » « less