skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scaling up conservation agriculture: An exploration of challenges and opportunities through a stakeholder engagement process
Abstract Increasing the resilience of agricultural landscapes requires fundamental changes to the dominant commodity production model, including incorporating practices such as reduced tillage, cover cropping, and extended rotations that reduce soil disturbance while increasing biological diversity. Increasing farmer adoption of these conservation systems offers the potential to transform agriculture to a more vibrant, resilient system that protects soil, air, and water quality. Adoption of these resilience practices is not without significant challenges. This paper presents findings from a participatory effort to better understand these challenges and to develop solutions to help producers overcome them. Through repeated, facilitated discussions with farmers and agricultural and conservation professionals across the U.S. state of Michigan, we confronted the policy, economic, and structural barriers that are inhibiting broader adoption of conservation systems, as well as identified policies, programs, and markets that can support their adoption. What emerged was a complex picture and dynamic set of challenges at multiple spatial scales and across multiple domains. The primary themes emerging from these discussions were barriers and opportunities, including markets, social networks, human capital, and conservation programs. Exacerbating the technical, agronomic, and economic challenges farmers face at the farm level, there are a host of community constraints, market access and availability problems, climatic and environmental changes, and policies (governmental and corporate) that cross‐pressure farmers when it comes to making conservation decisions. Understanding these constraints is critical to developing programs, policies, and state and national investments that can drive adoption of conservation agriculture.  more » « less
Award ID(s):
1832042
PAR ID:
10361715
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Environmental Quality
Volume:
52
Issue:
3
ISSN:
0047-2425
Format(s):
Medium: X Size: p. 465-475
Size(s):
p. 465-475
Sponsoring Org:
National Science Foundation
More Like this
  1. While conservation practices promote soil health and reduce the negative environmental effects from agricultural production, their adoption rates are generally low. To facilitate farmer adoption, we carried out a survey to identify potential challenges faced by farmers regarding conservation tillage and cover crop adoption in the western margin of the US Corn Belt. We found farmers' top two concerns regarding conservation tillage were delayed planting, caused by slow soil warming in spring, and increased dependence on herbicide and fungicides. Narrow planting window and lack of time/labor were perceived by farmers as the two primary challenges for cover crop adoption. Some sense of place factors, including the commonly included dimensions of attachment, identity and dependence, played a role in farmers' perceived challenges. For example, respondents more economically dependent on farming perceived greater challenges. We found that farmers' challenge perceptions regarding reduced yield and lack of time/labor significantly decreased as years of usage increased, implying that time and experience could dilute some challenges faced by farmers. Our findings indicate that social network use, technical guidance and economic subsidies are likely to address the concerns of farmers and facilitate their adoption of conservation practices. 
    more » « less
  2. Rates of poverty and economic inequality in rural Alabama are among the nation's highest and increasing agricultural productivity can provide a needed boost to these communities. The transition from rain-fed to irrigation-fed (RFtoIF) agriculture has significantly increased farm productivity and profitability elsewhere in the United States. Despite this potential to enhance stability and resilience in rural economies, irrigated cropland accounts for only 5% of Alabama's total cropland as numerous barriers remain to irrigation adoption. To encourage RFtoIF transition, it is imperative to identify the challenges faced by individual farmers at farm, community, and state levels. This study presents a multi-level mixed effects survival analysis to identify the physiographic, socioecological, and economic factors that influence the location and timing of irrigation adoption. We integrate spatiotemporal cropland and climatological data with field-verified locations of center-pivot irrigation systems, local physiographic characteristics, and parcel-level surface water access and average well depth. Access to surface water, costs to access groundwater, and soil characteristics were generally important influences in all regions, but regions were differentiated by the extent to which new irrigation was more responsive to social influences vs. precipitation and price trends. Our findings also highlighted the diversity of farming conditions across the state, which suggested that diverse policy tools are needed that acknowledge the varying motivations and constraints faced by Alabama's farmers. 
    more » « less
  3. Iowa's farmlands, celebrated for their remarkable agricultural productivity, are facing pressing environmental challenges, including soil erosion, waterway nitrogen pollution, and vulnerability to extreme weather events. These issues imperil the state's agricultural sector's long-term sustainability and economic stability. Despite substantial investments from governmental and non-governmental entities to encourage conservation practice use, adoption rates remain persistently low. In this report, we use quantitative, qualitative, and social network analysis on a sample of 38 farmers to understand how social networks shape their adoption of conservation practices. We analyze data through a systems framework and compare counties with high- and low-adoption of conservation practices to assess influences from the individual farmer level to the broader societal context. We conclude with a discussion of strategic implications to promote conservation adoption. 
    more » « less
  4. Abstract Reducing tillage is a key goal for conservation and regenerative agriculture, yet research has struggled to identify ways to increase the use of the practice among farmers. Recent scholarship has identified social capital as an important piece of the adoption puzzle. However, the ways in which farmers' social capital influences conservation practice use are seldom identified or explored. In this study, we tested the effects of three measures of social capital on the adoption of no‐till among 1,523 row crop farmers in the United States Corn Belt. Specifically, we operationalized the extent to which farmers' social networks, network trust, and community conservation norms affect intra‐individual processes and thus influence farmers' decisions regarding adoption. Our results identified key mechanisms for the promotion of conservation practices through social capital. Subjective conservation norms emerged as a main pathway through which farmers' social capital influenced their use of no‐till, indicating that networks, network trust, and community norms can increase adoption through affective paths. We conclude that academic research and policy experts should continue to situate farmers as social actors and pay heed to the norms and cultural expectations surrounding agricultural conservation practices. 
    more » « less
  5. Abstract The adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and tillage practices based on the farm’s pedoclimatic and topographic characteristics. Hence, the primary objective of this study was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study region. Our analysis revealed that 4% of the corn (Zea mays) and soybean (Glycine max) fields in eastern SD had a cover crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The methods developed through this research may provide a viable means for tracking and documenting farmers’ agricultural management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution that could help used to monitor various climate-smart agricultural practices. 
    more » « less