skip to main content


Title: Worm‐Inspired Soft Robots Enable Adaptable Pipeline and Tunnel Inspection
  more » « less
NSF-PAR ID:
10361718
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Intelligent Systems
Volume:
4
Issue:
1
ISSN:
2640-4567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martínez-García, Edgar (Ed.)
    This paper presents the design, development, and testing of a robot that combines soft-body grasping and crawling locomotion to navigate tubular objects. Inspired by the natural snakes’ climbing locomotion of tubular objects, the soft robot includes proximal and distal modules with radial expansion/contraction for grasping around the objects and a longitudinal contractile–expandable driving module in-between for providing a bi-directional crawling movement along the length of the object. The robot’s grasping modules are made of fabrics, and the crawling module is made of an extensible pneumatic soft actuator (ePSA). Conceptual designs and CAD models of the robot parts, textile-based inflatable structures, and pneumatic driving mechanisms were developed. The mechanical parts were fabricated using advanced and conventional manufacturing techniques. An Arduino-based electro-pneumatic control board was developed for generating cyclic patterns of grasping and locomotion. Different reinforcing patterns and materials characterize the locomotor actuators’ dynamical responses to the varying input pressures. The robot was tested in a laboratory setting to navigate a cable, and the collected data were used to modify the designs and control software and hardware. The capability of the soft robot for navigating cables in vertical, horizontal, and curved path scenarios was successfully demonstrated. Compared to the initial design, the forward speed is improved three-fold. 
    more » « less
  2. null (Ed.)
    Soft, tip-extending, pneumatic “vine robots” that grow via eversion are well suited for navigating cluttered environments. Two key mechanisms that add to the robot’s functionality are a tip-mounted retraction device that allows the growth process to be reversed, and a tip-mounted camera that enables vision. However, previous designs used rigid, relatively heavy electromechanical retraction devices and external camera mounts, which reduce some advantages of these robots. These designs prevent the robot from squeezing through tight gaps, make it challenging to lift the robot tip against gravity, and require the robot to drag components against the environment. To address these limitations, we present a soft, pneumatically driven retraction device and an internal camera mount that are both lightweight and smaller than the diameter of the robot. The retraction device is composed of a soft, extending pneumatic actuator and a pair of soft clamping actuators that work together in an inch-worming motion. The camera mount sits inside the robot body and is kept at the tip of the robot by two low-friction interlocking components. We present characterizations of our retraction device and demonstrations that the robot can grow and retract through turns, tight gaps, and sticky environments while transmitting live video from the tip. Our designs advance the ability of everting vine robots to navigate difficult terrain while collecting data. 
    more » « less
  3. Although soft devices (grippers, actuators, and elementary robots) are rapidly becoming an integral part of the broad field of robotics, autonomy for completely soft devices has only begun to be developed. Adaptation of conventional systems of control to soft devices requires hard valves and electronic controls. This paper describes completely soft pneumatic digital logic gates having a physical scale appropriate for use with current (macroscopic) soft actuators. Each digital logic gate utilizes a single bistable valve—the pneumatic equivalent of a Schmitt trigger—which relies on the snap-through instability of a hemispherical membrane to kink internal tubes and operates with binary high/low input and output pressures. Soft, pneumatic NOT, AND, and OR digital logic gates—which generate known pneumatic outputs as a function of one, or multiple, pneumatic inputs—allow fabrication of digital logic circuits for a set–reset latch, two-bit shift register, leading-edge detector, digital-to-analog converter (DAC), and toggle switch. The DAC and toggle switch, in turn, can control and power a soft actuator (demonstrated using a pneu-net gripper). These macroscale soft digital logic gates are scalable to high volumes of airflow, do not consume power at steady state, and can be reconfigured to achieve multiple functionalities from a single design (including configurations that receive inputs from the environment and from human users). This work represents a step toward a strategy to develop autonomous control—one not involving an electronic interface or hard components—for soft devices.

     
    more » « less
  4. Sensing and actuation are intricately connected in soft robotics, where contact may change actuator mechanics and robot behavior. To improve soft robotic control and performance, proprioception and contact sensors are needed to report robot state without altering actuation mechanics or introducing bulky, rigid components. For bioinspired McKibben-style fluidic actuators, prior work in sensing has focused on sensing the strain of the actuator by embedding sensors in the actuator bladder during fabrication, or by adhering sensors to the actuator surface after fabrication. However, material property mismatches between sensors and actuators can impede actuator performance, and many soft sensors available for use with fluidic actuators rely on costly or labor-intensive fabrication methods. Here, we demonstrate a low-cost and easy-to manufacture-tubular liquid metal strain sensor for use with soft actuators that can be used to detect actuator strain and contact between the actuator and external objects. The sensor is flexible, can be fabricated with commercial-off-the-shelf components, and can be easily integrated with existing soft actuators to supplement sensing, regardless of actuator shape or size. Furthermore, the soft tubular strain sensor exhibits low hysteresis and high sensitivity. The approach presented in this work provides a low-cost, soft sensing solution for broad application in soft robotics. 
    more » « less
  5.  
    more » « less