skip to main content


Title: The Visual Lightcurve of Comet C/1995 O1 (Hale–Bopp) from 1995 to 1999
Abstract

The great comet C/1995 O1 (Hale–Bopp) presented a remarkable opportunity to study its long-term brightness over four years. We used 2240 observations published in theInternational Comet Quarterlyfrom 17 observers during 1995 July to 1999 September to create a secular lightcurve. In order to account for observer differences, we present a novel algorithm to reduce scatter and increase precision in a lightcurve compiled from many sources. It is implemented in a publicly available code, ICQSPLITTER, which uses a self-consistent statistical approach. To first order, the comet’s lightcurve approximates anr−4response for both pre- and postperihelion distances. The preperihelion data are better fit with a fifth-order polynomial with inflection points at 4.0, 2.6, 2.1, and 1.1 au, some of which are associated with physical changes in the coma. Outbursts may have occurred a few days before perihelion and at ∼2.2 and 7.4 au postperihelion. TheAfρvalues derived from the final magnitudes are consistent with anr−1.5dependence on heliocentric distance and are within a factor of 2–4 of those derived from spectroscopy and narrowband photometry. We present correlation equations for visual magnitudes and CO and H2O production rates that are consistent with the preperihelion brightness increasing due to CO outgassing until about 2.6–3.0 au from the Sun and then are strongly correlated with H2O production rates. We also present two generalized correlation equations that may be useful for observation planning and data analysis with theJames Webb Space Telescopeand other observatories.

 
more » « less
NSF-PAR ID:
10361781
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
2
Issue:
1
ISSN:
2632-3338
Format(s):
Medium: X Size: Article No. 17
Size(s):
["Article No. 17"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Centaurs are minor solar system bodies with orbits transitioning between those of trans-Neptunian scattered disk objects and Jupiter-family comets (JFCs). 39P/Oterma (39P) is a frequently active centaur that has recently held both centaur and JFC classifications and was observed with the JWST NIRSpec instrument on 2022 July 27 UTC while it was 5.82 au from the Sun. For the first time, CO2gas emission was detected in a centaur, with a production rate ofQCO2= (5.96 ± 0.80) × 1023molecules s−1. This is the lowest detection of CO2of any centaur or comet. CO and H2O were not detected down to constraining upper limits. Derived mixing ratios ofQCO/QCO2≤ 2.03 andQCO2/QH2O≥ 0.60 are consistent with CO2and/or CO outgassing playing large roles in driving the activity, but not water, and show a significant difference between the coma abundances of 29P/Schwassmann–Wachmann 1, another centaur at a similar heliocentric distance, which may be explained by thermal processing of 39P’s surface during its previous JFC orbit. To help contextualize the JWST data we also acquired visible CCD imaging data on two dates in 2022 July (Gemini-North) and September (Lowell Discovery Telescope). Image analysis and photometry based on these data are consistent with a point-source detection and an estimated effective nucleus radius of 39P in the range ofRnuc= 2.21–2.49 km.

     
    more » « less
  2. Abstract

    Manx comets are objects on long-period comet orbits that are inactive as they approach perihelion. They are of particular interest because they may help constrain solar system formation models. 2013 LU28 was discovered as an inactive asteroidal object on 2013 June 8 at a heliocentric distance of 21.8 au. Images and photometric data were obtained of 2013 LU28 from multiple telescopes from pre-discovery data in 2010 until the present. Its spectral reflectivity is consistent with typical organic-rich comet surfaces with colors ofgr= 0.97 ± 0.02,ri= 0.43 ± 0.02, andrz= 0.65 ± 0.03, corresponding to a spectral reflectivity slope of 30 ± 3%/100 nm. There is no obvious indication of dust coma in deep stacked images. We estimate the nucleus radius to be ∼55.7 ± 0.3 km assuming an albedo of 4%. This is much smaller than the 1σupper limits on the nucleus size of 79.9 km from the NEOWISE survey assuming the same albedo, since the NEOWISE survey is not very sensitive to objects this small at this distance. The heliocentric light curve suggests possible activity betweenr∼ 17 and 13 au where 2013 LU28 is brighter than expected. This is consistent with outgassing from CO or CO2. Using surface brightness profiles, we estimate an upper limit of ∼0.01 kg s−1for micron-sized dust that can be produced without us detecting it for the inactive portion of the light curve, and upper limits of ∼1 kg s−1for CO and ∼1.5 kg s−1for CO2between 20 and 14.7 au.

     
    more » « less
  3. Abstract

    Comet C/2014 UN271(Bernardinelli-Bernstein), incoming from the Oort cloud, is remarkable in having the brightest (and presumably largest) nucleus of any well-measured comet and having been discovered at the heliocentric distancerh≈ 29 au, farther than any Oort cloud comet. In this work, we describe the discovery process and observations and the properties that can be inferred from images recorded until the first reports of activity in 2021 June. The orbit hasi= 95°, with a perihelion of 10.97 au to be reached in 2031 and a previous aphelion at 40,400 ± 260 au. Backward integration of the orbit under a standard Galactic tidal model and known stellar encounters suggests a perihelion ofq≈ 18 au on its previous perihelion passage 3.5 Myr ago; hence, the current data could be the first ever obtained of a comet that has not been inside Uranus’s orbit in 4 Gyr. The photometric data show an unresolved nucleus with absolute magnitudeHr= 8.0, colors that are typical of comet nuclei or Damocloids, and no secular trend as it traversed the range 34–23 au. For ther-band geometric albedopr, this implies a diameter of150(pr/0.04)0.5km. There is strong evidence of brightness fluctuations at the ±0.2 mag level, but no rotation period can be discerned. A coma, nominally consistent with a “stationary” 1/ρsurface brightness distribution, grew in scattering cross section at an exponential rate fromAfρ≈ 1 to ≈150 m as the comet approached from 28 to 20 au. The activity rate is consistent with a very simple model of sublimation of a surface species in radiative equilibrium with the Sun. The inferred enthalpy of sublimation matches those of CO2and NH3. More volatile species, such as N2, CH4, and CO, must be far less abundant on the sublimating surfaces.

     
    more » « less
  4. Abstract

    We report production rates of H2O and nine trace molecules (C2H6, CH4, H2CO, CH3OH, HCN, NH3, C2H2, OCS, and CO) in long-period comet C/2020 S3 (Erasmus) using the high-resolution, cross-dispersed infrared spectrograph (iSHELL) at the NASA Infrared Telescope Facility, on two pre-perihelion dates at heliocentric distancesRh= 0.49 and 0.52 au. Our molecular abundances with respect to simultaneously or contemporaneously measured H2O indicate that S3 is depleted in CH3OH compared to its mean abundance relative to H2O among the overall comet population (Oort Cloud comets and Jupiter-family comets combined), whereas the eight other measured species have near-average abundances relative to H2O. In addition, compared to comets observed atRh< 0.80 au at near-infrared wavelengths, S3 showed enhancement in the abundances of volatile species H2CO, NH3, and C2H2, indicating possible additional (distributed) sources in the coma for these volatile species. The spatial profiles of volatile species in S3 in different instrumental settings are dramatically different, which might suggest temporal variability in comet outgassing behavior between the nonsimultaneous measurements. The spatial distributions of simultaneously measured volatile species C2H6and CH4are nearly symmetric and closely track each other, while those of CO and HCN co-measured with H2O (using different instrument settings) are similar to each other and are asymmetric in the antisunward direction.

     
    more » « less
  5. Abstract

    The coma of comet C/2016 R2 (PanSTARRS) is one of the most chemically peculiar ever observed, in particular due to its extremely high CO/H2O andN2+/H2O ratios, and unusual trace volatile abundances. However, the complex shape of its CO emission lines, as well as uncertainties in the coma structure and excitation, has lead to ambiguities in the total CO production rate. We performed high-resolution, spatially, spectrally, and temporally resolved CO observations using the James Clerk Maxwell Telescope and Submillimeter Array to elucidate the outgassing behavior of C/2016 R2. Results are analyzed using a new, time-dependent, three-dimensional radiative transfer code (SUBlimating gases in LIME; SUBLIME, based on the open-source version of the LIne Modeling Engine), incorporating for the first time, accurate state-to-state collisional rate coefficients for the CO–CO system. The total CO production rate was found to be in the range of (3.8 − 7.6) × 1028s−1between 2018 January 13 and February 1 (atrH= 2.8–2.9 au), with a mean value of (5.3 ± 0.6) × 1028s−1. The emission is concentrated in a near-sunward jet, with a half-opening angle of ∼62° and an outflow velocity of 0.51 ± 0.01 km s−1, compared to 0.25 ± 0.01 km s−1in the ambient (and nightside) coma. Evidence was also found for an extended source of CO emission, possibly due to icy grain sublimation around 1.2 × 105km from the nucleus. Based on the coma molecular abundances, we propose that the nucleus ices of C/2016 R2 can be divided into a rapidly sublimating apolar phase, rich in CO, CO2, N2, and CH3OH, and a predominantly frozen (or less abundant), polar phase containing more H2O, CH4, H2CO, and HCN.

     
    more » « less